File size: 17,990 Bytes
7ae1978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "bf6d68b1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:33:28.877007Z",
     "iopub.status.busy": "2025-03-25T07:33:28.876899Z",
     "iopub.status.idle": "2025-03-25T07:33:29.039989Z",
     "shell.execute_reply": "2025-03-25T07:33:29.039655Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Liver_cirrhosis\"\n",
    "cohort = \"GSE182065\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Liver_cirrhosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Liver_cirrhosis/GSE182065\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Liver_cirrhosis/GSE182065.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Liver_cirrhosis/gene_data/GSE182065.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Liver_cirrhosis/clinical_data/GSE182065.csv\"\n",
    "json_path = \"../../output/preprocess/Liver_cirrhosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b1fac390",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "856c970f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:33:29.041339Z",
     "iopub.status.busy": "2025-03-25T07:33:29.041205Z",
     "iopub.status.idle": "2025-03-25T07:33:29.061390Z",
     "shell.execute_reply": "2025-03-25T07:33:29.061110Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Expression profiling of prognostic liver signature in clinical fibrotic liver tissues cultured with various anti-fibrotic and chemopreventive agents\"\n",
      "!Series_summary\t\"Background/Aims: There is a major unmet need to assess prognostic impact of anti-fibrotics in clinical trials due to the slow rate of liver fibrosis progression. We aimed to develop a surrogate biomarker to predict future fibrosis progression.\"\n",
      "!Series_summary\t\"Methods: A Fibrosis Progression Signature (FPS) was defined to predict fibrosis progression within 5 years in HCV and NAFLD patients with no to minimal fibrosis at baseline (n=421), and validated in an independent NAFLD cohort (n=78). The FPS was used to assess response to 13 candidate anti-fibrotics in organotypic ex vivo cultures of clinical fibrotic liver tissues (n=78), and cenicriviroc in NASH patients enrolled in a clinical trial (n=19, NCT02217475). A serum-protein-based surrogate FPS (FPSec) was developed and technically evaluated in a liver disease patient cohort (n=79).\"\n",
      "!Series_summary\t\"Results: A 20-gene FPS was defined and validated in an independent NAFLD cohort (aOR=10.93, AUROC=0.86). Among computationally inferred fibrosis-driving FPS genes, BCL2 was confirmed as a potential pharmacological target using clinical liver tissues. Systematic ex vivo evaluation of 13 candidate anti-fibrotics identified rational combination therapies based on epigallocatechin gallate, some of which were validated for enhanced anti-fibrotic effect in ex vivo culture of clinical liver tissues. In NASH patients treated with cenicriviroc, FPS modulation was associated with 1-year fibrosis improvement accompanied by suppression of the E2F pathway. Induction of PPAR-alfa pathway was absent in patients without fibrosis improvement, suggesting benefit of combining PPAR-alfa agonism to improve anti-fibrotic efficacy of cenicriviroc. A 7-protein FPSec panel showed concordant prognostic prediction with FPS.\"\n",
      "!Series_summary\t\"Conclusion: FPS predicts long-term fibrosis progression in an etiology-agnostic manner, which can inform anti-fibrotic drug development.\"\n",
      "!Series_overall_design\t\"Gene expression profiling of snap-frozen surgical liver tissues treated with various anti-fibrotic and chemopreventive agents in ex vivo precision-cut liver slice (PCLS) culture. The samples in the FPS validation set 2.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['tissue: Liver'], 1: ['sample group: Compound treatment', 'sample group: Baseline (before culture)', 'sample group: Vehicle control'], 2: ['compound: Galunisertib', 'compound: Erlotinib', 'compound: AM095', 'compound: MG132', 'compound: Bortezomib', 'compound: Cenicriviroc', 'compound: Pioglitazone', 'compound: Metformin', 'compound: EGCG', 'compound: I-BET 151', 'compound: JQ1', 'compound: Captopril', 'compound: Nizatidine', 'compound: none', 'compound: DMSO'], 3: ['concentration: 10microM', 'concentration: 5microM', 'concentration: 3microM', 'concentration: 20microM', 'concentration: 100microM', 'concentration: 30microM', 'concentration: na', 'concentration: 0.1%']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "88280a36",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b2879e07",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:33:29.062380Z",
     "iopub.status.busy": "2025-03-25T07:33:29.062281Z",
     "iopub.status.idle": "2025-03-25T07:33:29.067009Z",
     "shell.execute_reply": "2025-03-25T07:33:29.066743Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information and series title, this dataset appears to contain gene expression data\n",
    "# The summary mentions a 20-gene Fibrosis Progression Signature (FPS) and gene expression profiling\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (Liver cirrhosis):\n",
    "# The background information indicates this is a study on liver fibrosis, but there's no explicit cirrhosis indicator\n",
    "# in the sample characteristics. However, it's a study about fibrotic liver tissues, so all samples have some level\n",
    "# of fibrosis but we can't distinguish cirrhosis specifically.\n",
    "trait_row = None  # Cannot determine cirrhosis status from the available data\n",
    "\n",
    "# For age:\n",
    "# No age information is provided in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender:\n",
    "# No gender information is provided in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "# Since trait_row is None, we don't need to define convert_trait, but we'll create a placeholder function\n",
    "def convert_trait(value):\n",
    "    # This function won't be used since trait_row is None\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # This function won't be used since age_row is None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # This function won't be used since gender_row is None\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# The trait_row is None, meaning trait data is not available\n",
    "is_trait_available = False if trait_row is None else True\n",
    "\n",
    "# Initial filtering on usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we should skip this substep\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5ef18fbd",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "320263bc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:33:29.067972Z",
     "iopub.status.busy": "2025-03-25T07:33:29.067874Z",
     "iopub.status.idle": "2025-03-25T07:33:29.094363Z",
     "shell.execute_reply": "2025-03-25T07:33:29.094067Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Liver_cirrhosis/GSE182065/GSE182065_series_matrix.txt.gz\n",
      "Gene data shape: (192, 293)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['AARS', 'ABLIM1', 'ACOT2', 'ACSM3', 'ACTR2', 'ADD3', 'ADH5', 'ADH6',\n",
      "       'ADRA2B', 'AEBP1', 'AKAP13', 'AKR1A1', 'AKR1D1', 'ALAS1', 'ALDH9A1',\n",
      "       'ANKRD46', 'ANXA1', 'ANXA3', 'AOX1', 'AP1B1'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2bb980f4",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "266bc878",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:33:29.095309Z",
     "iopub.status.busy": "2025-03-25T07:33:29.095208Z",
     "iopub.status.idle": "2025-03-25T07:33:29.096945Z",
     "shell.execute_reply": "2025-03-25T07:33:29.096642Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers in the data\n",
    "# Looking at the first 20 gene identifiers: 'AARS', 'ABLIM1', 'ACOT2', etc.\n",
    "# These appear to be standard human gene symbols\n",
    "# No mapping to gene symbols is required as they're already in that format\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6fd322e5",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "60fdea07",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:33:29.097921Z",
     "iopub.status.busy": "2025-03-25T07:33:29.097817Z",
     "iopub.status.idle": "2025-03-25T07:33:29.218096Z",
     "shell.execute_reply": "2025-03-25T07:33:29.217721Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (192, 293)\n",
      "Gene data shape after normalization: (191, 293)\n",
      "Normalized gene expression data saved to ../../output/preprocess/Liver_cirrhosis/gene_data/GSE182065.csv\n",
      "No clinical data available for this dataset, skipping clinical data processing.\n",
      "Abnormality detected in the cohort: GSE182065. Preprocessing failed.\n",
      "Dataset is not usable for liver cirrhosis analysis due to lack of clinical data. No linked data file saved.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "# Use normalize_gene_symbols_in_index to standardize gene symbols\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Check if trait_row is None (indicating no clinical data is available)\n",
    "if trait_row is None:\n",
    "    print(\"No clinical data available for this dataset, skipping clinical data processing.\")\n",
    "    \n",
    "    # Validate and save cohort information with trait_available=False\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=False,\n",
    "        is_biased=True,  # Set to True since we can't use this data without clinical features\n",
    "        df=pd.DataFrame(),  # Empty DataFrame since we have no linked data\n",
    "        note=\"Dataset contains gene expression data from cell lines with HCV infection, which is not appropriate for liver cirrhosis trait analysis.\"\n",
    "    )\n",
    "    \n",
    "    print(\"Dataset is not usable for liver cirrhosis analysis due to lack of clinical data. No linked data file saved.\")\n",
    "else:\n",
    "    # If clinical data is available, proceed with the linking and processing\n",
    "    # 2. Link the clinical and genetic data\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(selected_clinical_df.head())\n",
    "\n",
    "    # Link the clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "    print(f\"Linked data shape before processing: {linked_data.shape}\")\n",
    "    print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
    "    print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Empty dataframe\")\n",
    "\n",
    "    # 3. Handle missing values\n",
    "    try:\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error handling missing values: {e}\")\n",
    "        linked_data = pd.DataFrame()  # Create empty dataframe if error occurs\n",
    "\n",
    "    # 4. Check for bias in features\n",
    "    if not linked_data.empty:\n",
    "        is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "        print(f\"Data shape after removing biased features: {linked_data.shape}\")\n",
    "    else:\n",
    "        is_biased = True\n",
    "        print(\"Cannot check for bias as dataframe is empty after missing value handling\")\n",
    "\n",
    "    # 5. Validate and save cohort information\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=True,\n",
    "        is_trait_available=True,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=\"Dataset contains gene expression data for liver fibrosis progression, which is relevant to liver cirrhosis research.\"\n",
    "    )\n",
    "\n",
    "    # 6. Save the linked data if usable\n",
    "    if is_usable:\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(\"Dataset is not usable for analysis. No linked data file saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}