File size: 17,990 Bytes
7ae1978 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "bf6d68b1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:33:28.877007Z",
"iopub.status.busy": "2025-03-25T07:33:28.876899Z",
"iopub.status.idle": "2025-03-25T07:33:29.039989Z",
"shell.execute_reply": "2025-03-25T07:33:29.039655Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Liver_cirrhosis\"\n",
"cohort = \"GSE182065\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Liver_cirrhosis\"\n",
"in_cohort_dir = \"../../input/GEO/Liver_cirrhosis/GSE182065\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Liver_cirrhosis/GSE182065.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Liver_cirrhosis/gene_data/GSE182065.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Liver_cirrhosis/clinical_data/GSE182065.csv\"\n",
"json_path = \"../../output/preprocess/Liver_cirrhosis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "b1fac390",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "856c970f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:33:29.041339Z",
"iopub.status.busy": "2025-03-25T07:33:29.041205Z",
"iopub.status.idle": "2025-03-25T07:33:29.061390Z",
"shell.execute_reply": "2025-03-25T07:33:29.061110Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Expression profiling of prognostic liver signature in clinical fibrotic liver tissues cultured with various anti-fibrotic and chemopreventive agents\"\n",
"!Series_summary\t\"Background/Aims: There is a major unmet need to assess prognostic impact of anti-fibrotics in clinical trials due to the slow rate of liver fibrosis progression. We aimed to develop a surrogate biomarker to predict future fibrosis progression.\"\n",
"!Series_summary\t\"Methods: A Fibrosis Progression Signature (FPS) was defined to predict fibrosis progression within 5 years in HCV and NAFLD patients with no to minimal fibrosis at baseline (n=421), and validated in an independent NAFLD cohort (n=78). The FPS was used to assess response to 13 candidate anti-fibrotics in organotypic ex vivo cultures of clinical fibrotic liver tissues (n=78), and cenicriviroc in NASH patients enrolled in a clinical trial (n=19, NCT02217475). A serum-protein-based surrogate FPS (FPSec) was developed and technically evaluated in a liver disease patient cohort (n=79).\"\n",
"!Series_summary\t\"Results: A 20-gene FPS was defined and validated in an independent NAFLD cohort (aOR=10.93, AUROC=0.86). Among computationally inferred fibrosis-driving FPS genes, BCL2 was confirmed as a potential pharmacological target using clinical liver tissues. Systematic ex vivo evaluation of 13 candidate anti-fibrotics identified rational combination therapies based on epigallocatechin gallate, some of which were validated for enhanced anti-fibrotic effect in ex vivo culture of clinical liver tissues. In NASH patients treated with cenicriviroc, FPS modulation was associated with 1-year fibrosis improvement accompanied by suppression of the E2F pathway. Induction of PPAR-alfa pathway was absent in patients without fibrosis improvement, suggesting benefit of combining PPAR-alfa agonism to improve anti-fibrotic efficacy of cenicriviroc. A 7-protein FPSec panel showed concordant prognostic prediction with FPS.\"\n",
"!Series_summary\t\"Conclusion: FPS predicts long-term fibrosis progression in an etiology-agnostic manner, which can inform anti-fibrotic drug development.\"\n",
"!Series_overall_design\t\"Gene expression profiling of snap-frozen surgical liver tissues treated with various anti-fibrotic and chemopreventive agents in ex vivo precision-cut liver slice (PCLS) culture. The samples in the FPS validation set 2.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: Liver'], 1: ['sample group: Compound treatment', 'sample group: Baseline (before culture)', 'sample group: Vehicle control'], 2: ['compound: Galunisertib', 'compound: Erlotinib', 'compound: AM095', 'compound: MG132', 'compound: Bortezomib', 'compound: Cenicriviroc', 'compound: Pioglitazone', 'compound: Metformin', 'compound: EGCG', 'compound: I-BET 151', 'compound: JQ1', 'compound: Captopril', 'compound: Nizatidine', 'compound: none', 'compound: DMSO'], 3: ['concentration: 10microM', 'concentration: 5microM', 'concentration: 3microM', 'concentration: 20microM', 'concentration: 100microM', 'concentration: 30microM', 'concentration: na', 'concentration: 0.1%']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "88280a36",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b2879e07",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:33:29.062380Z",
"iopub.status.busy": "2025-03-25T07:33:29.062281Z",
"iopub.status.idle": "2025-03-25T07:33:29.067009Z",
"shell.execute_reply": "2025-03-25T07:33:29.066743Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information and series title, this dataset appears to contain gene expression data\n",
"# The summary mentions a 20-gene Fibrosis Progression Signature (FPS) and gene expression profiling\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# For trait (Liver cirrhosis):\n",
"# The background information indicates this is a study on liver fibrosis, but there's no explicit cirrhosis indicator\n",
"# in the sample characteristics. However, it's a study about fibrotic liver tissues, so all samples have some level\n",
"# of fibrosis but we can't distinguish cirrhosis specifically.\n",
"trait_row = None # Cannot determine cirrhosis status from the available data\n",
"\n",
"# For age:\n",
"# No age information is provided in the sample characteristics\n",
"age_row = None\n",
"\n",
"# For gender:\n",
"# No gender information is provided in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"# Since trait_row is None, we don't need to define convert_trait, but we'll create a placeholder function\n",
"def convert_trait(value):\n",
" # This function won't be used since trait_row is None\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" # This function won't be used since age_row is None\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" # This function won't be used since gender_row is None\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# The trait_row is None, meaning trait data is not available\n",
"is_trait_available = False if trait_row is None else True\n",
"\n",
"# Initial filtering on usability\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is None, we should skip this substep\n"
]
},
{
"cell_type": "markdown",
"id": "5ef18fbd",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "320263bc",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:33:29.067972Z",
"iopub.status.busy": "2025-03-25T07:33:29.067874Z",
"iopub.status.idle": "2025-03-25T07:33:29.094363Z",
"shell.execute_reply": "2025-03-25T07:33:29.094067Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Liver_cirrhosis/GSE182065/GSE182065_series_matrix.txt.gz\n",
"Gene data shape: (192, 293)\n",
"First 20 gene/probe identifiers:\n",
"Index(['AARS', 'ABLIM1', 'ACOT2', 'ACSM3', 'ACTR2', 'ADD3', 'ADH5', 'ADH6',\n",
" 'ADRA2B', 'AEBP1', 'AKAP13', 'AKR1A1', 'AKR1D1', 'ALAS1', 'ALDH9A1',\n",
" 'ANKRD46', 'ANXA1', 'ANXA3', 'AOX1', 'AP1B1'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "2bb980f4",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "266bc878",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:33:29.095309Z",
"iopub.status.busy": "2025-03-25T07:33:29.095208Z",
"iopub.status.idle": "2025-03-25T07:33:29.096945Z",
"shell.execute_reply": "2025-03-25T07:33:29.096642Z"
}
},
"outputs": [],
"source": [
"# Examining the gene identifiers in the data\n",
"# Looking at the first 20 gene identifiers: 'AARS', 'ABLIM1', 'ACOT2', etc.\n",
"# These appear to be standard human gene symbols\n",
"# No mapping to gene symbols is required as they're already in that format\n",
"\n",
"requires_gene_mapping = False\n"
]
},
{
"cell_type": "markdown",
"id": "6fd322e5",
"metadata": {},
"source": [
"### Step 5: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "60fdea07",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:33:29.097921Z",
"iopub.status.busy": "2025-03-25T07:33:29.097817Z",
"iopub.status.idle": "2025-03-25T07:33:29.218096Z",
"shell.execute_reply": "2025-03-25T07:33:29.217721Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape before normalization: (192, 293)\n",
"Gene data shape after normalization: (191, 293)\n",
"Normalized gene expression data saved to ../../output/preprocess/Liver_cirrhosis/gene_data/GSE182065.csv\n",
"No clinical data available for this dataset, skipping clinical data processing.\n",
"Abnormality detected in the cohort: GSE182065. Preprocessing failed.\n",
"Dataset is not usable for liver cirrhosis analysis due to lack of clinical data. No linked data file saved.\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"# Use normalize_gene_symbols_in_index to standardize gene symbols\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
"\n",
"# Check if trait_row is None (indicating no clinical data is available)\n",
"if trait_row is None:\n",
" print(\"No clinical data available for this dataset, skipping clinical data processing.\")\n",
" \n",
" # Validate and save cohort information with trait_available=False\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False,\n",
" is_biased=True, # Set to True since we can't use this data without clinical features\n",
" df=pd.DataFrame(), # Empty DataFrame since we have no linked data\n",
" note=\"Dataset contains gene expression data from cell lines with HCV infection, which is not appropriate for liver cirrhosis trait analysis.\"\n",
" )\n",
" \n",
" print(\"Dataset is not usable for liver cirrhosis analysis due to lack of clinical data. No linked data file saved.\")\n",
"else:\n",
" # If clinical data is available, proceed with the linking and processing\n",
" # 2. Link the clinical and genetic data\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
"\n",
" print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n",
" print(\"Clinical data preview:\")\n",
" print(selected_clinical_df.head())\n",
"\n",
" # Link the clinical and genetic data\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
" print(f\"Linked data shape before processing: {linked_data.shape}\")\n",
" print(\"Linked data preview (first 5 rows, 5 columns):\")\n",
" print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Empty dataframe\")\n",
"\n",
" # 3. Handle missing values\n",
" try:\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
" except Exception as e:\n",
" print(f\"Error handling missing values: {e}\")\n",
" linked_data = pd.DataFrame() # Create empty dataframe if error occurs\n",
"\n",
" # 4. Check for bias in features\n",
" if not linked_data.empty:\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" print(f\"Data shape after removing biased features: {linked_data.shape}\")\n",
" else:\n",
" is_biased = True\n",
" print(\"Cannot check for bias as dataframe is empty after missing value handling\")\n",
"\n",
" # 5. Validate and save cohort information\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data for liver fibrosis progression, which is relevant to liver cirrhosis research.\"\n",
" )\n",
"\n",
" # 6. Save the linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset is not usable for analysis. No linked data file saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|