File size: 32,938 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "31520d73",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:21.537573Z",
     "iopub.status.busy": "2025-03-25T05:10:21.537350Z",
     "iopub.status.idle": "2025-03-25T05:10:21.704439Z",
     "shell.execute_reply": "2025-03-25T05:10:21.704009Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Epilepsy\"\n",
    "cohort = \"GSE74571\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Epilepsy\"\n",
    "in_cohort_dir = \"../../input/GEO/Epilepsy/GSE74571\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Epilepsy/GSE74571.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Epilepsy/gene_data/GSE74571.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Epilepsy/clinical_data/GSE74571.csv\"\n",
    "json_path = \"../../output/preprocess/Epilepsy/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5b8f82c6",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "65d3f681",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:21.705727Z",
     "iopub.status.busy": "2025-03-25T05:10:21.705584Z",
     "iopub.status.idle": "2025-03-25T05:10:21.882091Z",
     "shell.execute_reply": "2025-03-25T05:10:21.881687Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Serum Conditions Do Not Abolish The Tumorigenicity of Glioma Stem Cells\"\n",
      "!Series_summary\t\"The subset of GBM patient samples gives rise to adherent cultures even in sphere culture conditions. Most samples in this subset are tumorigenic and exhibit a hybrid expression profile when tested with the marker panel. Cultures from these samples have a predominantly mesenchymal character based on substrate adherence, morphology, differentiation potential and gene expression.\"\n",
      "!Series_overall_design\t\"Total RNA isolated from glioblastoma stem cells (GSC) cultured as spheres was compared to that from adherent GSCs cultured in sphere culture conditions that exhibited both GSC and mesenchymal properties.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell/tissue type: GBM cell culture in 10% serum; mixture of cells from adherent and sphere cultured', 'cell/tissue type: GBM cell culture in 1% serum; mixture of cells from adherent and sphere cultured', 'cell/tissue type: GBM adherent cell culture in 1% serum', 'cell/tissue type: GBM adherent cell culture in 10% serum', 'cell/tissue type: fresh GBM tissue', 'cell/tissue type: fresh Normal human brain tissue', 'cell/tissue type: Bone marrow mesenchymal stem cells', 'cell/tissue type: adult human brain cell culture in 1% serum', 'cell/tissue type: Adipose tissue mesenchymal stem cells', 'cell/tissue type: GBM sphere cultures'], 1: ['culture type: adherent in 10% FBS', 'culture type: adherent in 1% FBS+TGF-a', 'culture type: adherent 1% FBS+TGF-a', 'culture type: adherent 10% FBS', nan, 'culture type: bone marrow-MSC', 'culture type: control normal in 1% FBS+TGF-a', 'culture type: adipose tissue-MSC', 'culture type: Grown as spheres']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b2898a6e",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "654be5e4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:21.883304Z",
     "iopub.status.busy": "2025-03-25T05:10:21.883192Z",
     "iopub.status.idle": "2025-03-25T05:10:21.889962Z",
     "shell.execute_reply": "2025-03-25T05:10:21.889603Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this appears to be gene expression data from GBM cells\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Looking at the sample characteristics dictionary\n",
    "# For trait (Epilepsy): This dataset is about GBM (glioblastoma), not epilepsy\n",
    "trait_row = None  # No Epilepsy data available\n",
    "\n",
    "# For age: No age information in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# For gender: No gender information in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    # Not needed since trait_row is None, but defining for completeness\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    # For epilepsy, we would return 1 for epilepsy patients and 0 for controls\n",
    "    # But this dataset doesn't have epilepsy data\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Not needed since age_row is None, but defining for completeness\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Not needed since gender_row is None, but defining for completeness\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    if 'female' in value or 'f' == value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we skip this substep\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d7e30f76",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "1b54b0d4",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:21.891012Z",
     "iopub.status.busy": "2025-03-25T05:10:21.890900Z",
     "iopub.status.idle": "2025-03-25T05:10:22.167362Z",
     "shell.execute_reply": "2025-03-25T05:10:22.166813Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SOFT file: ../../input/GEO/Epilepsy/GSE74571/GSE74571_family.soft.gz\n",
      "Matrix file: ../../input/GEO/Epilepsy/GSE74571/GSE74571_series_matrix.txt.gz\n",
      "Found the matrix table marker in the file.\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (47322, 36)\n",
      "First 20 gene/probe identifiers:\n",
      "['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209', 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229', 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236', 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253', 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for line in file:\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                break\n",
    "    \n",
    "    if found_marker:\n",
    "        print(\"Found the matrix table marker in the file.\")\n",
    "    else:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        \n",
    "    # Try to extract gene data from the matrix file\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    \n",
    "    if gene_data.shape[0] == 0:\n",
    "        print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Gene data shape: {gene_data.shape}\")\n",
    "        # Print the first 20 gene/probe identifiers\n",
    "        print(\"First 20 gene/probe identifiers:\")\n",
    "        print(gene_data.index[:20].tolist())\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "    \n",
    "    # Try to diagnose the file format\n",
    "    print(\"Examining file content to diagnose the issue:\")\n",
    "    try:\n",
    "        with gzip.open(matrix_file, 'rt') as file:\n",
    "            for i, line in enumerate(file):\n",
    "                if i < 10:  # Print first 10 lines to diagnose\n",
    "                    print(f\"Line {i}: {line.strip()[:100]}...\")  # Print first 100 chars of each line\n",
    "                else:\n",
    "                    break\n",
    "    except Exception as e2:\n",
    "        print(f\"Error examining file: {e2}\")\n",
    "\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "751fb0e6",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "053510dc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:22.168920Z",
     "iopub.status.busy": "2025-03-25T05:10:22.168807Z",
     "iopub.status.idle": "2025-03-25T05:10:22.170846Z",
     "shell.execute_reply": "2025-03-25T05:10:22.170473Z"
    }
   },
   "outputs": [],
   "source": [
    "# The gene identifiers start with \"ILMN_\" which are Illumina probe IDs, not human gene symbols\n",
    "# These are microarray probe identifiers from Illumina platform that need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ceb86706",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "57e8f6d5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:22.172201Z",
     "iopub.status.busy": "2025-03-25T05:10:22.172098Z",
     "iopub.status.idle": "2025-03-25T05:10:26.512376Z",
     "shell.execute_reply": "2025-03-25T05:10:26.511978Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'Species', 'Source', 'Search_Key', 'Transcript', 'ILMN_Gene', 'Source_Reference_ID', 'RefSeq_ID', 'Unigene_ID', 'Entrez_Gene_ID', 'GI', 'Accession', 'Symbol', 'Protein_Product', 'Probe_Id', 'Array_Address_Id', 'Probe_Type', 'Probe_Start', 'SEQUENCE', 'Chromosome', 'Probe_Chr_Orientation', 'Probe_Coordinates', 'Cytoband', 'Definition', 'Ontology_Component', 'Ontology_Process', 'Ontology_Function', 'Synonyms', 'Obsolete_Probe_Id', 'GB_ACC']\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n",
      "\n",
      "Complete sample of a few rows:\n",
      "             ID Species Source Search_Key\n",
      "0  ILMN_1343048     NaN    NaN        NaN\n",
      "1  ILMN_1343049     NaN    NaN        NaN\n",
      "2  ILMN_1343050     NaN    NaN        NaN\n",
      "\n",
      "Checking for gene information in Symbol column:\n",
      "Sample Symbol values: ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB']\n",
      "\n",
      "Sample of probe ID to gene symbol mappings:\n",
      "             ID                     Gene\n",
      "0  ILMN_1343048      phage_lambda_genome\n",
      "1  ILMN_1343049      phage_lambda_genome\n",
      "2  ILMN_1343050  phage_lambda_genome:low\n",
      "3  ILMN_1343052  phage_lambda_genome:low\n",
      "4  ILMN_1343059                     thrB\n",
      "5  ILMN_1343061  phage_lambda_genome:mm2\n",
      "6  ILMN_1343062  phage_lambda_genome:mm2\n",
      "7  ILMN_1343063  phage_lambda_genome:mm2\n",
      "8  ILMN_1343064  phage_lambda_genome:mm2\n",
      "9  ILMN_1343291                   EEF1A1\n",
      "\n",
      "Total number of probe-to-gene mappings: 44837\n",
      "Number of unique gene symbols: 31432\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=5))\n",
    "\n",
    "# Get a more complete view to understand the annotation structure\n",
    "print(\"\\nComplete sample of a few rows:\")\n",
    "print(gene_annotation.iloc[:3, :4].to_string())  # Show only first few columns for readability\n",
    "\n",
    "# Examine the Symbol column which contains gene information\n",
    "print(\"\\nChecking for gene information in Symbol column:\")\n",
    "if 'Symbol' in gene_annotation.columns:\n",
    "    sample_symbols = gene_annotation['Symbol'].head(5).tolist()\n",
    "    print(f\"Sample Symbol values: {sample_symbols}\")\n",
    "    \n",
    "    # Use the library function to create the mapping\n",
    "    mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')\n",
    "    \n",
    "    # Print sample of the mapping to confirm\n",
    "    print(\"\\nSample of probe ID to gene symbol mappings:\")\n",
    "    print(mapping_data.head(10))\n",
    "    \n",
    "    # Check the size of the mapping data\n",
    "    print(f\"\\nTotal number of probe-to-gene mappings: {len(mapping_data)}\")\n",
    "    \n",
    "    # Check how many unique gene symbols we have\n",
    "    unique_genes = mapping_data['Gene'].nunique()\n",
    "    print(f\"Number of unique gene symbols: {unique_genes}\")\n",
    "else:\n",
    "    print(\"\\nError: Could not find 'Symbol' column in the annotation data\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6523b622",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b7e3405b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:26.513668Z",
     "iopub.status.busy": "2025-03-25T05:10:26.513554Z",
     "iopub.status.idle": "2025-03-25T05:10:31.248212Z",
     "shell.execute_reply": "2025-03-25T05:10:31.247679Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Created mapping from 44837 probes to gene symbols\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracted gene expression data with shape: (47322, 36)\n",
      "Converted to gene expression data with shape: (21463, 36)\n",
      "\n",
      "Preview of gene expression data:\n",
      "       GSM1923163  GSM1923164  GSM1923165  GSM1923166  GSM1923167  GSM1923168  \\\n",
      "Gene                                                                            \n",
      "A1BG   156.612642  158.683792  141.065065  166.539842  147.699142  148.292042   \n",
      "A1CF   199.563955  202.111744  204.275435  189.724489  197.069696  205.367373   \n",
      "A26C3  200.364543  187.318372  195.010751  199.535568  196.223365  207.529118   \n",
      "\n",
      "       GSM1923169  GSM1923170  GSM1923171  GSM1923172  ...  GSM1923189  \\\n",
      "Gene                                                   ...               \n",
      "A1BG   140.293936  148.664011  142.755005  171.070572  ...  142.289219   \n",
      "A1CF   199.349222  195.814469  186.430527  199.087704  ...  205.696066   \n",
      "A26C3  201.087326  198.236513  195.836060  198.248079  ...  192.199217   \n",
      "\n",
      "       GSM1923190  GSM1923191  GSM1923192  GSM1923193  GSM1923194  GSM1923195  \\\n",
      "Gene                                                                            \n",
      "A1BG   148.592491  150.963319  151.790128  163.260151  141.078393  139.353620   \n",
      "A1CF   195.456171  185.191283  190.508907  194.998976  202.166058  192.298238   \n",
      "A26C3  187.475647  191.034708  196.974782  196.220411  202.108519  196.091496   \n",
      "\n",
      "       GSM1923196  GSM1923197  GSM1923198  \n",
      "Gene                                       \n",
      "A1BG   158.225050  153.791561  151.815746  \n",
      "A1CF   212.517849  191.096558  194.987968  \n",
      "A26C3  194.420515  198.483571  198.829891  \n",
      "\n",
      "[3 rows x 36 columns]\n"
     ]
    }
   ],
   "source": [
    "# 1. Soft file and matrix file have already been identified in previous steps\n",
    "# Extract gene annotation data from SOFT file for mapping\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Get the gene mapping dataframe using the appropriate columns from gene annotation\n",
    "# ID column contains probe identifiers matching those in gene expression data\n",
    "# Symbol column contains the gene symbols\n",
    "mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')\n",
    "print(f\"Created mapping from {len(mapping_data)} probes to gene symbols\")\n",
    "\n",
    "# 3. Extract gene expression data from matrix file\n",
    "gene_expression_data = get_genetic_data(matrix_file)\n",
    "print(f\"Extracted gene expression data with shape: {gene_expression_data.shape}\")\n",
    "\n",
    "# Apply the gene mapping to convert probe-level to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_expression_data, mapping_data)\n",
    "print(f\"Converted to gene expression data with shape: {gene_data.shape}\")\n",
    "\n",
    "# Preview the resulting gene expression data\n",
    "print(\"\\nPreview of gene expression data:\")\n",
    "print(gene_data.head(3))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "de9b3700",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "7847310b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:10:31.249801Z",
     "iopub.status.busy": "2025-03-25T05:10:31.249680Z",
     "iopub.status.idle": "2025-03-25T05:10:31.943367Z",
     "shell.execute_reply": "2025-03-25T05:10:31.942723Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape before normalization: (21463, 36)\n",
      "Gene data shape after normalization: (20259, 36)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Epilepsy/gene_data/GSE74571.csv\n",
      "No trait data (Epilepsy) available in this dataset based on previous analysis.\n",
      "Cannot proceed with data linking due to missing trait or gene data.\n",
      "Abnormality detected in the cohort: GSE74571. Preprocessing failed.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "try:\n",
    "    # Make sure the directory exists\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    \n",
    "    # Use the gene_data variable from the previous step (don't try to load it from file)\n",
    "    print(f\"Gene data shape before normalization: {gene_data.shape}\")\n",
    "    \n",
    "    # Apply normalization to gene symbols\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    # Use the normalized data for further processing\n",
    "    gene_data = normalized_gene_data\n",
    "    is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# 2. Load clinical data - respecting the analysis from Step 2\n",
    "# From Step 2, we determined:\n",
    "# trait_row = None  # No Epilepsy data available\n",
    "# age_row = None\n",
    "# gender_row = None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Skip clinical feature extraction when trait_row is None\n",
    "if is_trait_available:\n",
    "    try:\n",
    "        # Load the clinical data from file\n",
    "        soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "        background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        clinical_features = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age\n",
    "        )\n",
    "        \n",
    "        print(f\"Extracted clinical data shape: {clinical_features.shape}\")\n",
    "        print(\"Preview of clinical data (first 5 samples):\")\n",
    "        print(clinical_features.iloc[:, :5])\n",
    "        \n",
    "        # Save the properly extracted clinical data\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        clinical_features.to_csv(out_clinical_data_file)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error extracting clinical data: {e}\")\n",
    "        is_trait_available = False\n",
    "else:\n",
    "    print(\"No trait data (Epilepsy) available in this dataset based on previous analysis.\")\n",
    "\n",
    "# 3. Link clinical and genetic data if both are available\n",
    "if is_trait_available and is_gene_available:\n",
    "    try:\n",
    "        # Debug the column names to ensure they match\n",
    "        print(f\"Gene data columns (first 5): {gene_data.columns[:5].tolist()}\")\n",
    "        print(f\"Clinical data columns (first 5): {clinical_features.columns[:5].tolist()}\")\n",
    "        \n",
    "        # Check for common sample IDs\n",
    "        common_samples = set(gene_data.columns).intersection(clinical_features.columns)\n",
    "        print(f\"Found {len(common_samples)} common samples between gene and clinical data\")\n",
    "        \n",
    "        if len(common_samples) > 0:\n",
    "            # Link the clinical and genetic data\n",
    "            linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n",
    "            print(f\"Initial linked data shape: {linked_data.shape}\")\n",
    "            \n",
    "            # Debug the trait values before handling missing values\n",
    "            print(\"Preview of linked data (first 5 rows, first 5 columns):\")\n",
    "            print(linked_data.iloc[:5, :5])\n",
    "            \n",
    "            # Handle missing values\n",
    "            linked_data = handle_missing_values(linked_data, trait)\n",
    "            print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "            \n",
    "            if linked_data.shape[0] > 0:\n",
    "                # Check for bias in trait and demographic features\n",
    "                is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "                \n",
    "                # Validate the data quality and save cohort info\n",
    "                note = \"Dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n",
    "                is_usable = validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=is_biased,\n",
    "                    df=linked_data,\n",
    "                    note=note\n",
    "                )\n",
    "                \n",
    "                # Save the linked data if it's usable\n",
    "                if is_usable:\n",
    "                    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                    linked_data.to_csv(out_data_file)\n",
    "                    print(f\"Linked data saved to {out_data_file}\")\n",
    "                else:\n",
    "                    print(\"Data not usable for the trait study - not saving final linked data.\")\n",
    "            else:\n",
    "                print(\"After handling missing values, no samples remain.\")\n",
    "                validate_and_save_cohort_info(\n",
    "                    is_final=True,\n",
    "                    cohort=cohort,\n",
    "                    info_path=json_path,\n",
    "                    is_gene_available=is_gene_available,\n",
    "                    is_trait_available=is_trait_available,\n",
    "                    is_biased=True,\n",
    "                    df=pd.DataFrame(),\n",
    "                    note=\"No valid samples after handling missing values.\"\n",
    "                )\n",
    "        else:\n",
    "            print(\"No common samples found between gene expression and clinical data.\")\n",
    "            validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=is_gene_available,\n",
    "                is_trait_available=is_trait_available,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"No common samples between gene expression and clinical data.\"\n",
    "            )\n",
    "    except Exception as e:\n",
    "        print(f\"Error linking or processing data: {e}\")\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=is_gene_available,\n",
    "            is_trait_available=is_trait_available,\n",
    "            is_biased=True,  # Assume biased if there's an error\n",
    "            df=pd.DataFrame(),  # Empty dataframe for metadata\n",
    "            note=f\"Error in data processing: {str(e)}\"\n",
    "        )\n",
    "else:\n",
    "    # Create an empty DataFrame for metadata purposes\n",
    "    empty_df = pd.DataFrame()\n",
    "    \n",
    "    # We can't proceed with linking if either trait or gene data is missing\n",
    "    print(\"Cannot proceed with data linking due to missing trait or gene data.\")\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=True,  # Data is unusable if we're missing components\n",
    "        df=empty_df,  # Empty dataframe for metadata\n",
    "        note=\"Missing essential data components for linking: dataset contains gene expression data from GBM cell cultures, but no epilepsy phenotype information.\"\n",
    "    )"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}