File size: 24,939 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "704f0c67",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Essential_Thrombocythemia\"\n",
    "cohort = \"GSE159514\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Essential_Thrombocythemia\"\n",
    "in_cohort_dir = \"../../input/GEO/Essential_Thrombocythemia/GSE159514\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Essential_Thrombocythemia/GSE159514.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE159514.csv\"\n",
    "json_path = \"../../output/preprocess/Essential_Thrombocythemia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "342bd257",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0b6ddcfa",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7a466ed0",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eeccfaa8",
   "metadata": {},
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on background information, this dataset contains gene expression profiling data from microarray\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# For trait: The trait is available from the 'disease' field (row 0)\n",
    "trait_row = 0\n",
    "\n",
    "# For age and gender: Not available in the sample characteristics dictionary\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert trait value to binary (0 for control, 1 for case)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if applicable\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Based on the context, this is a study on myelofibrosis\n",
    "    # Essential Thrombocythemia (ET) specifically relates to PET (Post-ET myelofibrosis)\n",
    "    if 'PET' in value:  # Post-ET myelofibrosis is related to Essential Thrombocythemia\n",
    "        return 1\n",
    "    else:\n",
    "        return 0  # Other conditions (PPV, Overt-PMF, Pre-PMF) are not Essential Thrombocythemia\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age value to continuous number\"\"\"\n",
    "    # Not available in this dataset\n",
    "    return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
    "    # Not available in this dataset\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering on usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Create a proper DataFrame from the sample characteristics dictionary\n",
    "    # The dictionary has two columns (0 and 1) which need to be converted to a DataFrame with proper shape\n",
    "    \n",
    "    # First, create a dictionary where keys are column names and values are column data\n",
    "    sample_chars = {\n",
    "        0: ['disease: PPV', 'disease: Overt-PMF', 'disease: PET', 'disease: Pre-PMF'],\n",
    "        1: ['driver mutation: JAK2V617F', 'driver mutation: CALR Type 1', \n",
    "            'driver mutation: MPL', 'driver mutation: TN', \n",
    "            'driver mutation: CALR Type 2', 'driver mutation: CALR', \n",
    "            'driver mutation: JAK2 ex12']\n",
    "    }\n",
    "    \n",
    "    # For the geo_select_clinical_features function, we need a DataFrame where each row is a feature\n",
    "    # and each column is a sample. For this simple example, reshape it appropriately\n",
    "    clinical_data = pd.DataFrame()\n",
    "    for i, values in sample_chars.items():\n",
    "        # Add each feature as a row\n",
    "        row_df = pd.DataFrame([values])\n",
    "        clinical_data = pd.concat([clinical_data, row_df], ignore_index=True)\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    print(\"Preview of selected clinical data:\")\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(preview)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save clinical data as CSV\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1dc156dd",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8b2b9e18",
   "metadata": {},
   "outputs": [],
   "source": [
    "import os\n",
    "import json\n",
    "import pandas as pd\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# Check for required data files\n",
    "clinical_data_path = os.path.join(in_cohort_dir, \"sample_characteristics.csv\")\n",
    "if os.path.exists(clinical_data_path):\n",
    "    clinical_data = pd.read_csv(clinical_data_path)\n",
    "    print(f\"Clinical data loaded with shape {clinical_data.shape}\")\n",
    "else:\n",
    "    print(f\"Clinical data file not found at {clinical_data_path}\")\n",
    "    clinical_data = pd.DataFrame()\n",
    "\n",
    "metadata_path = os.path.join(in_cohort_dir, \"metadata.txt\")\n",
    "if os.path.exists(metadata_path):\n",
    "    with open(metadata_path, 'r') as f:\n",
    "        metadata = f.read()\n",
    "        print(f\"Metadata file loaded ({len(metadata)} characters)\")\n",
    "else:\n",
    "    metadata = \"\"\n",
    "    print(f\"Metadata file not found at {metadata_path}\")\n",
    "\n",
    "# Check for gene expression data\n",
    "matrix_path = os.path.join(in_cohort_dir, \"matrix.csv\")\n",
    "is_gene_available = os.path.exists(matrix_path)\n",
    "if is_gene_available:\n",
    "    print(f\"Gene expression matrix file found at {matrix_path}\")\n",
    "else:\n",
    "    print(\"Gene expression matrix file not found, setting is_gene_available to False\")\n",
    "\n",
    "# Since we don't have clinical data, we can't identify trait, age, and gender rows\n",
    "# Set all to None to indicate data is not available\n",
    "trait_row = None\n",
    "age_row = None\n",
    "gender_row = None\n",
    "\n",
    "# Define conversion functions for completeness, but they won't be used since data is not available\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to binary (0 for control, 1 for Essential Thrombocythemia)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    value = str(value).lower()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if any(term in value.lower() for term in ['et', 'essential thrombocythemia', 'thrombocythaemia']):\n",
    "        return 1\n",
    "    elif any(term in value.lower() for term in ['control', 'healthy', 'normal']):\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous numeric format\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    value = str(value)\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    import re\n",
    "    age_match = re.search(r'(\\d+)', value)\n",
    "    if age_match:\n",
    "        return float(age_match.group(1))\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    value = str(value).lower()\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if any(term in value for term in ['female', 'f', 'woman']):\n",
    "        return 0\n",
    "    elif any(term in value for term in ['male', 'm', 'man']):\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "print(f\"Trait data available: {is_trait_available}\")\n",
    "\n",
    "# Save metadata using the library function\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "print(f\"Cohort metadata saved to {json_path}\")\n",
    "print(f\"Dataset analysis complete. Gene data available: {is_gene_available}, Trait data available: {is_trait_available}\")\n",
    "\n",
    "# We skip clinical feature extraction since trait_row is None (data not available)\n",
    "if trait_row is not None:\n",
    "    # Use geo_select_clinical_features function to extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical data:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(\"Skipping clinical feature extraction as trait data is not available\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3ef04f37",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d38310a4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths again to access the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(\"First 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d04329b7",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "364cb8ce",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, I can see they follow the format like \"11715100_at\", \"11715101_s_at\", etc.\n",
    "# These are not human gene symbols but appear to be Affymetrix probe IDs\n",
    "# They will require mapping to human gene symbols for meaningful biological interpretation\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "25410565",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "bc744654",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d2adb263",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ce58e838",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the relevant columns for mapping\n",
    "probe_id_column = 'ID'\n",
    "gene_symbol_column = 'Gene Symbol'\n",
    "\n",
    "# 2. Get a gene mapping dataframe by extracting the relevant columns\n",
    "mapping_df = get_gene_mapping(gene_annotation, probe_id_column, gene_symbol_column)\n",
    "print(f\"Created mapping between {probe_id_column} and {gene_symbol_column}\")\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First 5 rows of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Mapped gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First 10 genes in mapped expression data:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# 4. Normalize gene symbols (if needed)\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First 10 genes after normalization:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# 5. Save the processed gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "152d4d15",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "6bd69386",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Re-acquire gene data as it seems to be missing in this context\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Extract gene annotation and mapping again\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Define trait availability based on previous analysis steps\n",
    "trait_row = None  # From previous steps we determined trait data wasn't properly available\n",
    "is_gene_available = True\n",
    "is_trait_available = False\n",
    "\n",
    "# 2. Check if trait data is available before attempting to link\n",
    "if trait_row is not None:\n",
    "    print(\"Loading the original clinical data...\")\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "\n",
    "    print(\"Extracting clinical features...\")\n",
    "    # Define conversion functions\n",
    "    def convert_trait(value):\n",
    "        if isinstance(value, str) and ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        return 1 if 'PET' in str(value) else 0\n",
    "        \n",
    "    def convert_age(value):\n",
    "        return None\n",
    "        \n",
    "    def convert_gender(value):\n",
    "        return None\n",
    "    \n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "\n",
    "    # Save the clinical data to a CSV file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "    # Link clinical and genetic data using the normalized gene data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "    # 3. Handle missing values in the linked data\n",
    "    print(\"Handling missing values...\")\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "    # 4. Check if trait is biased\n",
    "    print(\"Checking for bias in trait distribution...\")\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "else:\n",
    "    print(\"Trait data is not available, skipping clinical data extraction and linking.\")\n",
    "    # Set variables for final validation\n",
    "    is_biased = None  # Cannot determine bias without trait data\n",
    "    linked_data = pd.DataFrame()  # Empty dataframe for validation\n",
    "\n",
    "# 5. Final validation\n",
    "note = \"Dataset contains gene expression data from patients with myelofibrosis, but Essential Thrombocythemia specific annotations are not available in proper format.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "\n",
    "# 6. Save linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for trait-gene association studies due to lack of proper trait annotations.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "25ba5ab2",
   "metadata": {},
   "source": [
    "### Step 9: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "853fbe3b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Reload gene data and perform gene mapping since it's not available in this context\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Define the trait availability based on previous steps\n",
    "is_trait_available = trait_row is not None\n",
    "is_gene_available = True  # We have gene data\n",
    "\n",
    "# Skip clinical data extraction and linking since trait data is unavailable\n",
    "print(\"Trait data is not available, skipping clinical data extraction and linking.\")\n",
    "linked_data = pd.DataFrame()  # Empty dataframe since we can't link\n",
    "is_biased = False  # Cannot determine bias for non-existent trait data\n",
    "\n",
    "# Final validation\n",
    "note = \"Dataset contains gene expression data from myelofibrosis patients, but Essential Thrombocythemia specific annotations are not properly available for trait-gene association studies.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "\n",
    "# Save linked data if usable (will not execute since is_usable will be False)\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for trait-gene association studies due to lack of proper trait annotations.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}