File size: 37,886 Bytes
82732bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "63b40284",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:18.160228Z",
"iopub.status.busy": "2025-03-25T05:15:18.160045Z",
"iopub.status.idle": "2025-03-25T05:15:18.331008Z",
"shell.execute_reply": "2025-03-25T05:15:18.330621Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Essential_Thrombocythemia\"\n",
"cohort = \"GSE174060\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Essential_Thrombocythemia\"\n",
"in_cohort_dir = \"../../input/GEO/Essential_Thrombocythemia/GSE174060\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Essential_Thrombocythemia/GSE174060.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE174060.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv\"\n",
"json_path = \"../../output/preprocess/Essential_Thrombocythemia/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "70dde2f5",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "96a2ae91",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:18.332502Z",
"iopub.status.busy": "2025-03-25T05:15:18.332347Z",
"iopub.status.idle": "2025-03-25T05:15:18.525769Z",
"shell.execute_reply": "2025-03-25T05:15:18.525443Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene expression data from CD34+ BMMCs/PBMCs from MPN patients vs. healthy controls\"\n",
"!Series_summary\t\"Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of primary myelofibrosis (PMF), polycythemia vera (PV), essential thrombocythemia (ET) and seconday myelofibrosis (SMF), comprising post-ET-MF(pET-MF) and post-PV-MF(pPV-MF).\"\n",
"!Series_summary\t\"In this dataset, we compare the gene expression data of bone marrow or peripheral blood mononuclear cells (BMMCs/PBMCs) of CD34+ cells from MPN patients and healthy donors.\"\n",
"!Series_summary\t\"\"\n",
"!Series_overall_design\t\"36 samples (6 ET, 11 PV, 9 PMF, 4 secondary MF (SMF) patients and 6 healthy donors) were analyzed\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: bone marrow', 'tissue: peripheral blood'], 1: ['genotype: JAK2V617F', 'genotype: CALRins5', 'genotype: CALRdel52', 'genotype: MPLW515L', 'genotype: triple-negative', 'genotype: N/A'], 2: ['age: 41', 'age: 53', 'age: 52', 'age: 47', 'age: 19', 'age: 33', 'age: 58', 'age: 76', 'age: 68', 'age: 65', 'age: 61', 'age: 45', 'age: 42', 'age: 36', 'age: 69', 'age: 74', 'age: 75', 'age: 62', 'age: 72', 'age: 71', 'age: 43', 'age: 56', 'age: 29', 'age: 27', 'age: 28', 'age: 32'], 3: ['Sex: F', 'Sex: M'], 4: ['diagnosis: ET', 'diagnosis: PV', 'diagnosis: PMF', 'diagnosis: pPV-MF', 'diagnosis: pET-MF', 'diagnosis: healthy control']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "c3ac0df8",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "77942f46",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:18.526976Z",
"iopub.status.busy": "2025-03-25T05:15:18.526864Z",
"iopub.status.idle": "2025-03-25T05:15:18.532239Z",
"shell.execute_reply": "2025-03-25T05:15:18.531929Z"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import numpy as np\n",
"from typing import Dict, Any, Optional, Callable\n",
"import json\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the Series title \"Gene expression data from CD34+ BMMCs/PBMCs from MPN patients vs. healthy controls\"\n",
"# and the data type description, it appears this dataset contains gene expression data.\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Trait (Essential Thrombocythemia) is available in the 'diagnosis' field (key 4)\n",
"trait_row = 4\n",
"\n",
"# Age is available in key 2\n",
"age_row = 2\n",
"\n",
"# Gender is available in key 3\n",
"gender_row = 3\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"\n",
" Convert the trait value to binary (0 or 1).\n",
" 0 = No Essential Thrombocythemia, 1 = Has Essential Thrombocythemia\n",
" \"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract value after the colon and strip whitespace\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Check if the value indicates Essential Thrombocythemia\n",
" if value.lower() == \"et\":\n",
" return 1\n",
" elif value.lower() in [\"pv\", \"pmf\", \"ppv-mf\", \"pet-mf\", \"healthy control\"]:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"\n",
" Convert the age value to continuous numeric data.\n",
" \"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract value after the colon and strip whitespace\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"\n",
" Convert gender value to binary (0 for female, 1 for male).\n",
" \"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract value after the colon and strip whitespace\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if value.upper() == \"F\":\n",
" return 0\n",
" elif value.upper() == \"M\":\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata - Initial Filtering\n",
"# Check if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction (if trait_row is not None)\n",
"if trait_row is not None:\n",
" # Assuming clinical_data is a DataFrame from a previous step that contains the sample characteristics\n",
" # We need to first load it from the cohort directory\n",
" clinical_data_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
" if os.path.exists(clinical_data_path):\n",
" clinical_data = pd.read_csv(clinical_data_path)\n",
"\n",
" # Extract clinical features using the geo_select_clinical_features function\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
"\n",
" # Preview the extracted features\n",
" preview = preview_df(clinical_features)\n",
" print(\"Preview of clinical features:\", preview)\n",
"\n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save clinical features to CSV\n",
" clinical_features.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "8235571a",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c83485d7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:18.533219Z",
"iopub.status.busy": "2025-03-25T05:15:18.533118Z",
"iopub.status.idle": "2025-03-25T05:15:18.797044Z",
"shell.execute_reply": "2025-03-25T05:15:18.796652Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1',\n",
" 'TC01000004.hg.1', 'TC01000005.hg.1', 'TC01000006.hg.1',\n",
" 'TC01000007.hg.1', 'TC01000008.hg.1', 'TC01000009.hg.1',\n",
" 'TC01000010.hg.1', 'TC01000011.hg.1', 'TC01000012.hg.1',\n",
" 'TC01000013.hg.1', 'TC01000014.hg.1', 'TC01000015.hg.1',\n",
" 'TC01000016.hg.1', 'TC01000017.hg.1', 'TC01000018.hg.1',\n",
" 'TC01000019.hg.1', 'TC01000020.hg.1'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "6968571f",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "750c8959",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:18.798507Z",
"iopub.status.busy": "2025-03-25T05:15:18.798394Z",
"iopub.status.idle": "2025-03-25T05:15:18.800212Z",
"shell.execute_reply": "2025-03-25T05:15:18.799936Z"
}
},
"outputs": [],
"source": [
"# Looking at the gene identifiers, I can see they follow a pattern like \"TC01000001.hg.1\"\n",
"# These are not standard human gene symbols (like BRCA1, TP53, etc.)\n",
"# They appear to be probe IDs from a microarray platform, likely Affymetrix\n",
"# These will need to be mapped to standard human gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "245836c7",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "141869ab",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:18.801304Z",
"iopub.status.busy": "2025-03-25T05:15:18.801205Z",
"iopub.status.idle": "2025-03-25T05:15:24.727712Z",
"shell.execute_reply": "2025-03-25T05:15:24.727378Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'probeset_id': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['11869', '29554', '69091', '160446', '317811'], 'stop': ['14409', '31109', '70008', '161525', '328581'], 'total_probes': [49.0, 60.0, 30.0, 30.0, 191.0], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'ENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---', 'OTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---', 'NR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aaa.3 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxq.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxr.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000408384 // ENSEMBL // ncrna:miRNA chromosome:GRCh37:1:30366:30503:1 gene:ENSG00000221311 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:30267:31109:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002841 // Havana transcript // cdna:all chromosome:VEGA52:1:30267:31109:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002840 // Havana transcript // cdna:all chromosome:VEGA52:1:29554:31097:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0', 'NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // cdna:all chromosome:VEGA52:1:69091:70008:1 Gene:OTTHUMG00000001094 // chr1 // 100 // 100 // 0 // --- // 0', 'ENST00000496488 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:160446:161525:1 gene:ENSG00000241599 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000007169 // Havana transcript // cdna:all chromosome:VEGA52:1:160446:161525:1 Gene:OTTHUMG00000002525 // chr1 // 100 // 100 // 0 // --- // 0', 'NR_028322 // RefSeq // Homo sapiens uncharacterized LOC100132287 (LOC100132287), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028327 // RefSeq // Homo sapiens uncharacterized LOC100133331 (LOC100133331), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000425496 // ENSEMBL // ensembl:lincRNA chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000426316 // ENSEMBL // [retired] cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028325 // RefSeq // Homo sapiens uncharacterized LOC100132062 (LOC100132062), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// uc009vjk.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oeh.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oei.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346906 // Havana transcript // [retired] cdna:all chromosome:VEGA50:1:317811:328455:1 Gene:OTTHUMG00000156972 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346878 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:321056:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346879 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:324461:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346880 // Havana transcript // cdna:all chromosome:VEGA52:1:317720:324873:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346881 // Havana transcript // cdna:all chromosome:VEGA52:1:322672:324955:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0'], 'swissprot': ['NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// ENST00000456328 // B7ZGX0 /// ENST00000456328 // B7ZGX2 /// ENST00000456328 // B7ZGX3 /// ENST00000456328 // B7ZGX7 /// ENST00000456328 // B7ZGX8 /// ENST00000456328 // Q6ZU42', '---', 'NM_001005484 // Q8NH21 /// ENST00000335137 // Q8NH21', '---', 'NR_028325 // B4DYM5 /// NR_028325 // B4E0H4 /// NR_028325 // B4E3X0 /// NR_028325 // B4E3X2 /// NR_028325 // Q6ZQS4'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.719844 // brain| testis| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.618434 // testis| normal', 'ENST00000469289 // Hs.622486 // eye| normal| adult /// ENST00000469289 // Hs.729632 // testis| normal /// ENST00000469289 // Hs.742718 // testis /// ENST00000473358 // Hs.622486 // eye| normal| adult /// ENST00000473358 // Hs.729632 // testis| normal /// ENST00000473358 // Hs.742718 // testis', 'NM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---', '---', 'NR_028322 // Hs.446409 // adrenal gland| blood| bone| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| lymph node| mouth| pharynx| placenta| prostate| skin| testis| thymus| thyroid| uterus| bladder carcinoma| chondrosarcoma| colorectal tumor| germ cell tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| primitive neuroectodermal tumor of the CNS| uterine tumor|embryoid body| blastocyst| fetus| neonate| adult /// NR_028327 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000425496 // Hs.744556 // mammary gland| normal| adult /// ENST00000425496 // Hs.660700 // eye| placenta| testis| normal| adult /// ENST00000425496 // Hs.518952 // blood| brain| intestine| lung| mammary gland| mouth| muscle| pharynx| placenta| prostate| spleen| testis| thymus| thyroid| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| prostate cancer| fetus| adult /// ENST00000425496 // Hs.742131 // testis| normal| adult /// ENST00000425496 // Hs.636102 // uterus| uterine tumor /// ENST00000425496 // Hs.646112 // brain| intestine| larynx| lung| mouth| prostate| testis| thyroid| colorectal tumor| head and neck tumor| lung tumor| normal| prostate cancer| adult /// ENST00000425496 // Hs.647795 // brain| lung| lung tumor| adult /// ENST00000425496 // Hs.684307 // --- /// ENST00000425496 // Hs.720881 // testis| normal /// ENST00000425496 // Hs.729353 // brain| lung| placenta| testis| trachea| lung tumor| normal| fetus| adult /// ENST00000425496 // Hs.735014 // ovary| ovarian tumor /// NR_028325 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| kidney tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult'], 'category': ['main', 'main', 'main', 'main', 'main'], 'locus type': ['Coding', 'Coding', 'Coding', 'Coding', 'Coding'], 'notes': ['---', '---', '---', '---', '2 retired transcript(s) from ENSEMBL, Havana transcript'], 'SPOT_ID': ['chr1(+):11869-14409', 'chr1(+):29554-31109', 'chr1(+):69091-70008', 'chr1(+):160446-161525', 'chr1(+):317811-328581']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "497f6d52",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "05fa6a3a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:24.729031Z",
"iopub.status.busy": "2025-03-25T05:15:24.728894Z",
"iopub.status.idle": "2025-03-25T05:15:25.570835Z",
"shell.execute_reply": "2025-03-25T05:15:25.570378Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping preview:\n",
"{'ID': ['TC01000001.hg.1', 'TC01000002.hg.1', 'TC01000003.hg.1', 'TC01000004.hg.1', 'TC01000005.hg.1'], 'Gene': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102', 'ENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---', 'OTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---', 'NR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---']}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after mapping: (71527, 36)\n",
"First 5 gene symbols after mapping:\n",
"Index(['A-', 'A-2', 'A-52', 'A-575C2', 'A-E'], dtype='object', name='Gene')\n"
]
}
],
"source": [
"# 1. Identify which columns in gene_annotation correspond to gene identifiers and gene symbols\n",
"# Looking at the gene_annotation preview, we can see:\n",
"# - The 'ID' column matches the gene identifiers in gene_data.index (e.g., TC01000001.hg.1)\n",
"# - The 'gene_assignment' column contains gene symbol information\n",
"\n",
"# 2. Get gene mapping dataframe\n",
"gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
"\n",
"# Print the first few rows of the mapping to verify\n",
"print(\"Gene mapping preview:\")\n",
"print(preview_df(gene_mapping))\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print shape information of the mapped gene data\n",
"print(f\"Gene data shape after mapping: {gene_data.shape}\")\n",
"print(\"First 5 gene symbols after mapping:\")\n",
"print(gene_data.index[:5])\n"
]
},
{
"cell_type": "markdown",
"id": "fc7f999f",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "179dfed0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:15:25.572409Z",
"iopub.status.busy": "2025-03-25T05:15:25.572301Z",
"iopub.status.idle": "2025-03-25T05:15:38.759019Z",
"shell.execute_reply": "2025-03-25T05:15:38.758399Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: (24018, 36)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Essential_Thrombocythemia/gene_data/GSE174060.csv\n",
"Loading the original clinical data...\n",
"Extracting clinical features...\n",
"Clinical data preview:\n",
"{'GSM5285411': [1.0, 41.0, 0.0], 'GSM5285412': [1.0, 53.0, 0.0], 'GSM5285413': [1.0, 52.0, 1.0], 'GSM5285414': [1.0, 47.0, 1.0], 'GSM5285415': [1.0, 19.0, 1.0], 'GSM5285416': [1.0, 33.0, 0.0], 'GSM5285417': [0.0, 58.0, 1.0], 'GSM5285418': [0.0, 76.0, 1.0], 'GSM5285419': [0.0, 68.0, 1.0], 'GSM5285420': [0.0, 65.0, 0.0], 'GSM5285421': [0.0, 61.0, 1.0], 'GSM5285422': [0.0, 45.0, 1.0], 'GSM5285423': [0.0, 68.0, 0.0], 'GSM5285424': [0.0, 42.0, 1.0], 'GSM5285425': [0.0, 36.0, 0.0], 'GSM5285426': [0.0, 42.0, 1.0], 'GSM5285427': [0.0, 69.0, 0.0], 'GSM5285428': [0.0, 45.0, 1.0], 'GSM5285429': [0.0, 74.0, 1.0], 'GSM5285430': [0.0, 75.0, 1.0], 'GSM5285431': [0.0, 62.0, 1.0], 'GSM5285432': [0.0, 58.0, 1.0], 'GSM5285433': [0.0, 76.0, 1.0], 'GSM5285434': [0.0, 72.0, 0.0], 'GSM5285435': [0.0, 61.0, 0.0], 'GSM5285436': [0.0, 76.0, 1.0], 'GSM5285437': [0.0, 71.0, 0.0], 'GSM5285438': [0.0, 43.0, 0.0], 'GSM5285439': [0.0, 56.0, 0.0], 'GSM5285440': [0.0, 68.0, 0.0], 'GSM5285441': [0.0, 29.0, 0.0], 'GSM5285442': [0.0, 27.0, 0.0], 'GSM5285443': [0.0, 28.0, 1.0], 'GSM5285444': [0.0, 28.0, 1.0], 'GSM5285445': [0.0, 32.0, 0.0], 'GSM5285446': [0.0, 27.0, 0.0]}\n",
"Clinical data saved to ../../output/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (36, 24021)\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (36, 24021)\n",
"Checking for bias in trait distribution...\n",
"For the feature 'Essential_Thrombocythemia', the least common label is '1.0' with 6 occurrences. This represents 16.67% of the dataset.\n",
"The distribution of the feature 'Essential_Thrombocythemia' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 39.75\n",
" 50% (Median): 54.5\n",
" 75%: 68.0\n",
"Min: 19.0\n",
"Max: 76.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 17 occurrences. This represents 47.22% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"Dataset usability: True\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Essential_Thrombocythemia/GSE174060.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"print(\"Loading the original clinical data...\")\n",
"# Get the matrix file again to ensure we have the proper data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"print(\"Extracting clinical features...\")\n",
"# Use the clinical_data obtained directly from the matrix file\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save the clinical data to a CSV file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data using the normalized gene data\n",
"print(\"Linking clinical and genetic data...\")\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"print(\"Handling missing values...\")\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check if trait is biased\n",
"print(\"Checking for bias in trait distribution...\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression data from patients with Essential Thrombocythemia (ET), Polycythemia Vera (PV), and Primary Myelofibrosis (PMF).\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|