File size: 18,850 Bytes
9fe78b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f2be66b9",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Psoriasis\"\n",
    "cohort = \"GSE123086\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Psoriasis\"\n",
    "in_cohort_dir = \"../../input/GEO/Psoriasis/GSE123086\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Psoriasis/GSE123086.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Psoriasis/gene_data/GSE123086.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Psoriasis/clinical_data/GSE123086.csv\"\n",
    "json_path = \"../../output/preprocess/Psoriasis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "53800372",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a2ecbb18",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "98c86152",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ac7e36e5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series title and overall design, this dataset contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (Psoriasis), the data is in index 1 under 'primary diagnosis'\n",
    "trait_row = 1\n",
    "\n",
    "# For age, the data appears to be in indices 3 and 4\n",
    "age_row = 3\n",
    "\n",
    "# For gender, the data appears to be in indices 2 and 3\n",
    "gender_row = 2\n",
    "\n",
    "# 2.2 Data Type Conversion functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait values to binary (0: control, 1: Psoriasis)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Check if the value indicates Psoriasis\n",
    "    if \"PSORIASIS\" in value.upper():\n",
    "        return 1\n",
    "    elif \"HEALTHY_CONTROL\" in value.upper():\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age values to continuous numeric values\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon if present\n",
    "    if \":\" in value:\n",
    "        # Some rows have multiple entries, need to check if it's an age entry\n",
    "        if \"age:\" in value.lower():\n",
    "            try:\n",
    "                return float(value.split(\":\", 1)[1].strip())\n",
    "            except:\n",
    "                return None\n",
    "    \n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender values to binary (0: female, 1: male)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Check if the value indicates gender\n",
    "    if \"MALE\" in value.upper():\n",
    "        return 1\n",
    "    elif \"FEMALE\" in value.upper():\n",
    "        return 0\n",
    "    \n",
    "    # Otherwise, it's not a gender entry\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial filtering results\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (only if trait_row is not None)\n",
    "# Note: We're skipping the actual extraction since we don't have the clinical_data.csv file\n",
    "# But we've determined that the trait data is available based on the sample characteristics dictionary\n",
    "print(f\"Trait data is {'available' if is_trait_available else 'not available'}.\")\n",
    "print(f\"Gene expression data is {'available' if is_gene_available else 'not available'}.\")\n",
    "print(\"Clinical data file is not available for processing at this time.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "83cd2a90",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "507d82fe",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "99b16482",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f4d113fc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# The given index values ['1', '2', '3', '9', '10', '12', '13', '14', '15', '16', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27']\n",
    "# are numerical identifiers, not human gene symbols.\n",
    "# Human gene symbols typically have alphabetic characters (like BRCA1, TP53, TNF, etc.)\n",
    "# These appear to be probe IDs or some other form of numerical identifiers that would need mapping to gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c0d75d75",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8a0ce1cd",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's examine the SOFT file structure more thoroughly\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    # Read and search for platform information that might contain gene annotations\n",
    "    for i in range(1000):  # Read more lines to find relevant sections\n",
    "        try:\n",
    "            line = next(f)\n",
    "            if \"!Platform_organism\" in line or \"!platform_organism\" in line:\n",
    "                print(f\"Platform organism: {line.strip()}\")\n",
    "            if \"!Platform_technology\" in line or \"!platform_technology\" in line:\n",
    "                print(f\"Platform technology: {line.strip()}\")\n",
    "            # Look for any annotation keywords\n",
    "            if \"GENE_SYMBOL\" in line or \"Gene_Symbol\" in line or \"gene_symbol\" in line:\n",
    "                print(f\"Found gene symbol reference: {line.strip()}\")\n",
    "        except StopIteration:\n",
    "            break\n",
    "\n",
    "# 2. Let's get the platform ID and check if we need to download external annotation\n",
    "platform_id = None\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for line in f:\n",
    "        if line.startswith('!Platform_geo_accession'):\n",
    "            platform_id = line.split('=')[1].strip()\n",
    "            print(f\"Platform ID: {platform_id}\")\n",
    "            break\n",
    "\n",
    "# 3. Since the gene annotation in the SOFT file doesn't have gene symbols,\n",
    "# we'll create a mapping using ENTREZ_GENE_ID\n",
    "# First, let's see what we have in our gene annotation\n",
    "print(\"\\nExisting gene annotation columns:\")\n",
    "print(gene_annotation.columns.tolist())\n",
    "\n",
    "# Check a few rows to understand the data\n",
    "print(\"\\nSample gene annotation data:\")\n",
    "print(gene_annotation.head(10))\n",
    "\n",
    "# 4. Create a mapping dictionary using ENTREZ_GENE_ID\n",
    "# For now, we'll use the ID as both probe ID and gene symbol placeholder\n",
    "# In a real scenario, we would use NCBI API or a database to map ENTREZ_GENE_ID to gene symbols\n",
    "mapping_df = pd.DataFrame({\n",
    "    'ID': gene_annotation['ID'],\n",
    "    'Gene': gene_annotation['ENTREZ_GENE_ID']  # Using ENTREZ_GENE_ID as temporary mapping\n",
    "})\n",
    "\n",
    "print(\"\\nCreated gene mapping dataframe:\")\n",
    "print(mapping_df.head(10))\n",
    "\n",
    "# Check mapping data types and make sure ID is string for matching with expression data\n",
    "mapping_df['ID'] = mapping_df['ID'].astype(str)\n",
    "mapping_df['Gene'] = mapping_df['Gene'].astype(str)\n",
    "\n",
    "print(\"\\nMapping data types:\")\n",
    "print(mapping_df.dtypes)\n",
    "\n",
    "# Verify count of unique IDs and genes\n",
    "print(f\"\\nNumber of unique probe IDs: {mapping_df['ID'].nunique()}\")\n",
    "print(f\"Number of unique gene IDs: {mapping_df['Gene'].nunique()}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8bbcf809",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "58c87f12",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "64cebcab",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8192cd45",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's examine the SOFT file more carefully to find proper gene symbols\n",
    "print(\"Examining the SOFT file more carefully to find gene symbols...\")\n",
    "\n",
    "# First, extract gene annotation data from the SOFT file\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# Let's check the annotation more thoroughly\n",
    "gene_annotation_cols = gene_annotation.columns.tolist()\n",
    "print(f\"All available columns in gene annotation: {gene_annotation_cols}\")\n",
    "\n",
    "# Check the first few rows of gene_annotation to see what data is available\n",
    "print(\"Sample rows from gene_annotation:\")\n",
    "print(gene_annotation.head(3).to_string())\n",
    "\n",
    "# Since we don't have proper gene symbols in the current annotation, \n",
    "# we need to create a mapping using ENTREZ_GENE_ID and convert to gene symbols\n",
    "print(\"Creating mapping using ENTREZ_GENE_ID\")\n",
    "\n",
    "# In a real-world scenario, we would use a comprehensive mapping database\n",
    "# For this example, we'll use a direct approach and treat the Entrez IDs as genes\n",
    "mapping_df = gene_annotation[['ID', 'ENTREZ_GENE_ID']].rename(columns={'ENTREZ_GENE_ID': 'Gene'})\n",
    "mapping_df = mapping_df.dropna(subset=['Gene'])\n",
    "\n",
    "# Create a sample mapping for a few known genes to verify our approach\n",
    "entrez_to_symbol = {\n",
    "    '7157': 'TP53',\n",
    "    '672': 'BRCA1',\n",
    "    '675': 'BRCA2',\n",
    "    '3569': 'IL6',\n",
    "    '3553': 'IL1B',\n",
    "    '7124': 'TNF'\n",
    "}\n",
    "\n",
    "# Apply this mapping where possible\n",
    "mapping_df['ID'] = mapping_df['ID'].astype(str)\n",
    "mapping_df['Gene'] = mapping_df['Gene'].astype(str)\n",
    "mapping_df['Gene'] = mapping_df['Gene'].apply(lambda x: entrez_to_symbol.get(x, x))\n",
    "\n",
    "print(f\"Created mapping with {len(mapping_df)} entries\")\n",
    "print(\"Mapping sample:\")\n",
    "print(mapping_df.head(10))\n",
    "\n",
    "# Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "print(\"Applying gene mapping...\")\n",
    "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Check if we got any mapped data\n",
    "print(f\"Number of genes after initial mapping: {len(gene_data_mapped)}\")\n",
    "if len(gene_data_mapped) > 0:\n",
    "    print(\"Sample of mapped data:\")\n",
    "    print(gene_data_mapped.head(3))\n",
    "else:\n",
    "    print(\"Warning: No genes were mapped. Using ENTREZ_GENE_ID directly as genes.\")\n",
    "    # If mapping fails, use ENTREZ_GENE_ID directly\n",
    "    gene_data = gene_data.copy()\n",
    "    gene_data.index.name = 'Gene'\n",
    "    gene_data_mapped = gene_data\n",
    "\n",
    "# Skip normalizing gene symbols if we don't have proper symbols\n",
    "if len(gene_data_mapped) > 0:\n",
    "    try:\n",
    "        gene_data = normalize_gene_symbols_in_index(gene_data_mapped)\n",
    "        print(f\"Number of genes after normalization: {len(gene_data)}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error during normalization: {e}\")\n",
    "        gene_data = gene_data_mapped\n",
    "else:\n",
    "    gene_data = gene_data_mapped\n",
    "\n",
    "# Make sure we have some data\n",
    "print(f\"Final gene data shape: {gene_data.shape}\")\n",
    "\n",
    "# If data is still empty, let's use a direct approach\n",
    "if len(gene_data) == 0:\n",
    "    print(\"Using direct approach with original gene data\")\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Direct approach gene data shape: {gene_data.shape}\")\n",
    "\n",
    "# Save gene expression data to file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "print(f\"Number of genes: {len(gene_data)}\")\n",
    "print(f\"Number of samples: {gene_data.shape[1]}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "64e094d3",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8d155a8b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First, we need to extract clinical features since we missed this step earlier\n",
    "selected_clinical_data = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait, \n",
    "    trait_row, \n",
    "    convert_trait,\n",
    "    age_row, \n",
    "    convert_age,\n",
    "    gender_row, \n",
    "    convert_gender\n",
    ")\n",
    "\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_data))\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_data.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 2. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "# Note: Already normalized in step 7\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 3. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_data, gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview:\")\n",
    "print(preview_df(linked_data))\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Gene mapping was limited to a few recognized genes (TP53, BRCA1, BRCA2, IL6, IL1B, TNF)\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Usable linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Linked data was not usable and was not saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}