File size: 36,646 Bytes
9fe78b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "908c415a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:28.673049Z",
"iopub.status.busy": "2025-03-25T03:43:28.672645Z",
"iopub.status.idle": "2025-03-25T03:43:28.842895Z",
"shell.execute_reply": "2025-03-25T03:43:28.842554Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Psoriasis\"\n",
"cohort = \"GSE226244\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Psoriasis\"\n",
"in_cohort_dir = \"../../input/GEO/Psoriasis/GSE226244\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Psoriasis/GSE226244.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Psoriasis/gene_data/GSE226244.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Psoriasis/clinical_data/GSE226244.csv\"\n",
"json_path = \"../../output/preprocess/Psoriasis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "898e8c39",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "059093db",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:28.844335Z",
"iopub.status.busy": "2025-03-25T03:43:28.844186Z",
"iopub.status.idle": "2025-03-25T03:43:29.051530Z",
"shell.execute_reply": "2025-03-25T03:43:29.051201Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Total skin transcriptome modification induced by IL-17A blockade\"\n",
"!Series_summary\t\"We studied psoriasis skin transcriptome modification induced by systemic IL-17A blockade with microarray analyses of total skin as part of a randomized placebo-controlled clinical trial (ClinicalTrial.gov identifier: NCT03131570)\"\n",
"!Series_overall_design\t\"Whole tissue samples of (1) 33 psoriasis skin lesions before IL-17A blockade, (2) 28 psoriasis skin lesions after IL-17A blockade, and (3) 8 normal skin (including GSE78097 data) were obtained via skin biopsy and subjected to microarray analysis.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease state: Psoriasis', 'disease state: Control'], 1: ['tissue: skin'], 2: ['lesional (ls) vs. normal: LS', 'lesional (ls) vs. normal: Normal'], 3: ['treatment: Pretreatment', 'treatment: Posttreatment'], 4: ['treatment_timeline: Baseline', 'treatment_timeline: on12', 'treatment_timeline: on24', 'treatment_timeline: off20']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "3a6529da",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "ebae33ef",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:29.052927Z",
"iopub.status.busy": "2025-03-25T03:43:29.052805Z",
"iopub.status.idle": "2025-03-25T03:43:29.060685Z",
"shell.execute_reply": "2025-03-25T03:43:29.060376Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{0: [1.0], 1: [0.0], 2: [nan], 3: [nan]}\n",
"Clinical data saved to ../../output/preprocess/Psoriasis/clinical_data/GSE226244.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains microarray analysis data of skin samples\n",
"# which indicates gene expression data is available\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# For trait (Psoriasis):\n",
"# From the sample characteristics dictionary, key 0 contains 'disease state: Psoriasis' and 'disease state: Control'\n",
"# This indicates if the subject has Psoriasis or not\n",
"trait_row = 0\n",
"\n",
"# For age:\n",
"# There is no age information in the sample characteristics dictionary\n",
"age_row = None\n",
"\n",
"# For gender:\n",
"# There is no gender information in the sample characteristics dictionary\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary format (1 for Psoriasis, 0 for Control)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Extract the value after the colon\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if value.lower() == 'psoriasis':\n",
" return 1\n",
" elif value.lower() == 'control':\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous format\"\"\"\n",
" # This function is defined but not used since age data is not available\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary format (0 for female, 1 for male)\"\"\"\n",
" # This function is defined but not used since gender data is not available\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if value.lower() in ['female', 'f']:\n",
" return 0\n",
" elif value.lower() in ['male', 'm']:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save cohort information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Create a DataFrame from the sample characteristics dictionary\n",
" # Sample Characteristics Dictionary from previous step:\n",
" sample_chars = {\n",
" 0: ['disease state: Psoriasis', 'disease state: Control'],\n",
" 1: ['tissue: skin'],\n",
" 2: ['lesional (ls) vs. normal: LS', 'lesional (ls) vs. normal: Normal'],\n",
" 3: ['treatment: Pretreatment', 'treatment: Posttreatment'],\n",
" 4: ['treatment_timeline: Baseline', 'treatment_timeline: on12', 'treatment_timeline: on24', 'treatment_timeline: off20']\n",
" }\n",
" \n",
" # Convert the sample characteristics to a DataFrame format that geo_select_clinical_features can process\n",
" clinical_data = pd.DataFrame.from_dict(sample_chars, orient='index')\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "20f070e4",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "d326c189",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:29.061820Z",
"iopub.status.busy": "2025-03-25T03:43:29.061714Z",
"iopub.status.idle": "2025-03-25T03:43:29.429246Z",
"shell.execute_reply": "2025-03-25T03:43:29.428882Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n",
" '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n",
" '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n",
" '1552263_at', '1552264_a_at', '1552266_at'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 54675 genes × 69 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "88250366",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "39cdf41c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:29.430979Z",
"iopub.status.busy": "2025-03-25T03:43:29.430842Z",
"iopub.status.idle": "2025-03-25T03:43:29.432949Z",
"shell.execute_reply": "2025-03-25T03:43:29.432633Z"
}
},
"outputs": [],
"source": [
"# These identifiers are Affymetrix probe IDs, not human gene symbols\n",
"# They need to be mapped to standard gene symbols for analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "13199af8",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f7a7a347",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:29.434346Z",
"iopub.status.busy": "2025-03-25T03:43:29.434251Z",
"iopub.status.idle": "2025-03-25T03:43:35.373906Z",
"shell.execute_reply": "2025-03-25T03:43:35.373371Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation dataframe column names:\n",
"Index(['ID', 'GB_ACC', 'SPOT_ID', 'Species Scientific Name', 'Annotation Date',\n",
" 'Sequence Type', 'Sequence Source', 'Target Description',\n",
" 'Representative Public ID', 'Gene Title', 'Gene Symbol',\n",
" 'ENTREZ_GENE_ID', 'RefSeq Transcript ID',\n",
" 'Gene Ontology Biological Process', 'Gene Ontology Cellular Component',\n",
" 'Gene Ontology Molecular Function'],\n",
" dtype='object')\n",
"\n",
"Preview of gene annotation data:\n",
"{'ID': ['1007_s_at', '1053_at', '117_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757'], 'SPOT_ID': [nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\"], 'Representative Public ID': ['U48705', 'M87338', 'X51757'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\"], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay']}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract gene annotation data from the SOFT file\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Preview the gene annotation dataframe\n",
"print(\"Gene annotation dataframe column names:\")\n",
"print(gene_annotation.columns)\n",
"\n",
"# Preview the first few rows to understand the data structure\n",
"print(\"\\nPreview of gene annotation data:\")\n",
"annotation_preview = preview_df(gene_annotation, n=3)\n",
"print(annotation_preview)\n",
"\n",
"# Maintain gene availability status as True based on previous steps\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "4d0639c7",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5d17a796",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:35.375355Z",
"iopub.status.busy": "2025-03-25T03:43:35.375221Z",
"iopub.status.idle": "2025-03-25T03:43:36.640138Z",
"shell.execute_reply": "2025-03-25T03:43:36.639759Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Preview of gene mapping DataFrame:\n",
" ID Gene\n",
"0 1007_s_at DDR1 /// MIR4640\n",
"1 1053_at RFC2\n",
"2 117_at HSPA6\n",
"3 121_at PAX8\n",
"4 1255_g_at GUCA1A\n",
"Shape of mapping dataframe: (45782, 2)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"After mapping to gene symbols:\n",
"Gene data dimensions: 21278 genes × 69 samples\n",
"First 10 gene symbols:\n",
"Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1',\n",
" 'A4GALT', 'A4GNT', 'AA06'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene expression data saved to ../../output/preprocess/Psoriasis/gene_data/GSE226244.csv\n"
]
}
],
"source": [
"# 1. Decide which columns in gene annotation correspond to identifiers and gene symbols\n",
"# From the preview, we can see that 'ID' in gene_annotation matches the probe IDs in gene_data\n",
"# And 'Gene Symbol' contains the human gene symbols we need\n",
"prob_col = 'ID'\n",
"gene_col = 'Gene Symbol'\n",
"\n",
"# 2. Get gene mapping dataframe by extracting the two columns from gene annotation\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"\n",
"# Print first few rows of the mapping dataframe\n",
"print(\"\\nPreview of gene mapping DataFrame:\")\n",
"print(mapping_df.head())\n",
"print(f\"Shape of mapping dataframe: {mapping_df.shape}\")\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene-level expressions\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print information about the resulting gene expression dataframe\n",
"print(\"\\nAfter mapping to gene symbols:\")\n",
"print(f\"Gene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(\"First 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Save the gene data to the specified output path\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "b72e8b43",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "4d65930d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:43:36.641667Z",
"iopub.status.busy": "2025-03-25T03:43:36.641552Z",
"iopub.status.idle": "2025-03-25T03:43:48.503479Z",
"shell.execute_reply": "2025-03-25T03:43:48.502912Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: 19845 genes × 69 samples\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene expression data saved to ../../output/preprocess/Psoriasis/gene_data/GSE226244.csv\n",
"Extracting clinical features from the original source...\n",
"Extracted clinical features preview:\n",
"{'GSM7068800': [1.0], 'GSM7068801': [1.0], 'GSM7068802': [1.0], 'GSM7068803': [1.0], 'GSM7068804': [1.0], 'GSM7068805': [1.0], 'GSM7068806': [1.0], 'GSM7068807': [1.0], 'GSM7068808': [1.0], 'GSM7068809': [1.0], 'GSM7068810': [1.0], 'GSM7068811': [1.0], 'GSM7068812': [1.0], 'GSM7068813': [1.0], 'GSM7068814': [1.0], 'GSM7068815': [1.0], 'GSM7068816': [1.0], 'GSM7068817': [1.0], 'GSM7068818': [1.0], 'GSM7068819': [1.0], 'GSM7068820': [1.0], 'GSM7068821': [1.0], 'GSM7068822': [1.0], 'GSM7068823': [1.0], 'GSM7068824': [1.0], 'GSM7068825': [1.0], 'GSM7068826': [1.0], 'GSM7068827': [1.0], 'GSM7068828': [1.0], 'GSM7068829': [1.0], 'GSM7068830': [1.0], 'GSM7068831': [1.0], 'GSM7068832': [1.0], 'GSM7068833': [1.0], 'GSM7068834': [1.0], 'GSM7068835': [1.0], 'GSM7068836': [1.0], 'GSM7068837': [1.0], 'GSM7068838': [1.0], 'GSM7068839': [1.0], 'GSM7068840': [1.0], 'GSM7068841': [1.0], 'GSM7068842': [1.0], 'GSM7068843': [1.0], 'GSM7068844': [1.0], 'GSM7068845': [1.0], 'GSM7068846': [1.0], 'GSM7068847': [1.0], 'GSM7068848': [1.0], 'GSM7068849': [1.0], 'GSM7068850': [1.0], 'GSM7068851': [1.0], 'GSM7068852': [1.0], 'GSM7068853': [1.0], 'GSM7068854': [1.0], 'GSM7068855': [1.0], 'GSM7068856': [1.0], 'GSM7068857': [1.0], 'GSM7068858': [1.0], 'GSM7068859': [1.0], 'GSM7068860': [1.0], 'GSM7068861': [0.0], 'GSM7068862': [0.0], 'GSM7068863': [0.0], 'GSM7068864': [0.0], 'GSM7068865': [0.0], 'GSM7068866': [0.0], 'GSM7068867': [0.0], 'GSM7068868': [0.0]}\n",
"Clinical data shape: (1, 69)\n",
"Clinical features saved to ../../output/preprocess/Psoriasis/clinical_data/GSE226244.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (69, 19846)\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (69, 19846)\n",
"\n",
"Checking for bias in feature variables:\n",
"For the feature 'Psoriasis', the least common label is '0.0' with 8 occurrences. This represents 11.59% of the dataset.\n",
"The distribution of the feature 'Psoriasis' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Psoriasis/GSE226244.csv\n",
"Final dataset shape: (69, 19846)\n"
]
}
],
"source": [
"# 1. Check if gene data is available after mapping\n",
"if gene_data.shape[0] == 0:\n",
" print(\"Error: Gene expression matrix is empty after mapping.\")\n",
" # Mark the dataset as not usable due to lack of gene expression data\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=False, # No usable gene data\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"Failed to map probe IDs to gene symbols. The annotation format may not be compatible with the extraction methods.\"\n",
" )\n",
" print(\"Dataset deemed not usable due to lack of gene expression data.\")\n",
"else:\n",
" # Only proceed with normalization if we have gene data\n",
" print(\"Normalizing gene symbols...\")\n",
" gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
"\n",
" # Save the normalized gene data\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" gene_data_normalized.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
" \n",
" # Extract clinical features from the original data source\n",
" print(\"Extracting clinical features from the original source...\")\n",
" # Get background information and clinical data again\n",
" background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
" clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
" background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" print(\"Extracted clinical features preview:\")\n",
" print(preview_df(selected_clinical_df))\n",
" print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
" \n",
" # Save the extracted clinical features\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
" \n",
" # Link clinical and genetic data\n",
" print(\"Linking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" \n",
" # Check if the linked data has adequate data\n",
" if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4: # 4 is an arbitrary small number\n",
" print(\"Error: Linked data has insufficient samples or features.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=linked_data,\n",
" note=\"Failed to properly link gene expression data with clinical features.\"\n",
" )\n",
" print(\"Dataset deemed not usable due to linking failure.\")\n",
" else:\n",
" # Handle missing values systematically\n",
" print(\"Handling missing values...\")\n",
" linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n",
" print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n",
" \n",
" # Check if there are still samples after missing value handling\n",
" if linked_data_clean.shape[0] == 0:\n",
" print(\"Error: No samples remain after handling missing values.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"All samples were removed during missing value handling.\"\n",
" )\n",
" print(\"Dataset deemed not usable as all samples were filtered out.\")\n",
" else:\n",
" # Check if the dataset is biased\n",
" print(\"\\nChecking for bias in feature variables:\")\n",
" is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n",
" \n",
" # Conduct final quality validation\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data_final,\n",
" note=\"Dataset contains gene expression data for Crohn's Disease patients, examining response to Infliximab treatment.\"\n",
" )\n",
" \n",
" # Save linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data_final.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" print(f\"Final dataset shape: {linked_data_final.shape}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|