File size: 38,521 Bytes
9fe78b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "d509e006",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:43:49.338123Z",
     "iopub.status.busy": "2025-03-25T03:43:49.338017Z",
     "iopub.status.idle": "2025-03-25T03:43:49.508909Z",
     "shell.execute_reply": "2025-03-25T03:43:49.508536Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Psoriasis\"\n",
    "cohort = \"GSE252029\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Psoriasis\"\n",
    "in_cohort_dir = \"../../input/GEO/Psoriasis/GSE252029\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Psoriasis/GSE252029.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Psoriasis/gene_data/GSE252029.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Psoriasis/clinical_data/GSE252029.csv\"\n",
    "json_path = \"../../output/preprocess/Psoriasis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cd2100b5",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "2bc728b9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:43:49.510398Z",
     "iopub.status.busy": "2025-03-25T03:43:49.510253Z",
     "iopub.status.idle": "2025-03-25T03:43:49.853546Z",
     "shell.execute_reply": "2025-03-25T03:43:49.853212Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Guselkumab reduces disease- and mechanism-related biomarkers more than adalimumab in patients with psoriasis: a VOYAGE 1 substudy\"\n",
      "!Series_summary\t\"In the phase 3 VOYAGE-1 trial (ClinicalTrials.gov identifier: NCT02207231), guselkumab demonstrated superior efficacy versus placebo and the tumor necrosis factor (TNF)-α antagonist, adalimumab, in patients with moderate-to-severe plaque psoriasis (Blauvelt et al., 2017). Here, skin samples were collected from patients in VOYAGE-1 and pharmacodynamic (PD) responses to guselkumab (vs adalimumab) treatment were assessed over 48 weeks.\"\n",
      "!Series_overall_design\t\"Psoriasis lesional skin (LS) and nonlesional skin (NL) samples were collected from 39 VOYAGE-1 trial patients who provided consent to participate in an optional skin biopsy substudy to evaluate PD effects on psoriasis transcriptomics, and were profiled using GeneChip HT HG-U133+ PM 96-Array Plate (Affymetrix, Santa Clara, CA, USA)\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['study id: CNTO1959PSO3001'], 1: ['subject id: 10521', 'subject id: 10563', 'subject id: 10294', 'subject id: 10461', 'subject id: 10079', 'subject id: 10062', 'subject id: 10115', 'subject id: 10205', 'subject id: 10193', 'subject id: 10252', 'subject id: 10798', 'subject id: 10332', 'subject id: 10063', 'subject id: 10118', 'subject id: 10500', 'subject id: 10263', 'subject id: 10265', 'subject id: 10334', 'subject id: 10932', 'subject id: 10933', 'subject id: 10982', 'subject id: 10401', 'subject id: 10512', 'subject id: 10110', 'subject id: 10027', 'subject id: 10566', 'subject id: 10989', 'subject id: 10227', 'subject id: 10380', 'subject id: 10286'], 2: ['treatment: Placebo to Guselkumab', 'treatment: Guselkumab', 'treatment: Adalimumab'], 3: ['time point: WK_0', 'time point: WK_4', 'time point: WK_24', 'time point: WK_48'], 4: ['skin: LS', 'skin: NL']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7825ef45",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "3aa2f227",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:43:49.854726Z",
     "iopub.status.busy": "2025-03-25T03:43:49.854613Z",
     "iopub.status.idle": "2025-03-25T03:43:49.868795Z",
     "shell.execute_reply": "2025-03-25T03:43:49.868494Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data preview:\n",
      "{'GSM7992374': [1.0], 'GSM7992375': [0.0], 'GSM7992376': [1.0], 'GSM7992377': [0.0], 'GSM7992378': [1.0], 'GSM7992379': [0.0], 'GSM7992380': [1.0], 'GSM7992381': [0.0], 'GSM7992382': [1.0], 'GSM7992383': [0.0], 'GSM7992384': [1.0], 'GSM7992385': [0.0], 'GSM7992386': [1.0], 'GSM7992387': [0.0], 'GSM7992388': [1.0], 'GSM7992389': [1.0], 'GSM7992390': [0.0], 'GSM7992391': [1.0], 'GSM7992392': [1.0], 'GSM7992393': [0.0], 'GSM7992394': [1.0], 'GSM7992395': [1.0], 'GSM7992396': [1.0], 'GSM7992397': [1.0], 'GSM7992398': [1.0], 'GSM7992399': [1.0], 'GSM7992400': [1.0], 'GSM7992401': [1.0], 'GSM7992402': [1.0], 'GSM7992403': [1.0], 'GSM7992404': [1.0], 'GSM7992405': [1.0], 'GSM7992406': [1.0], 'GSM7992407': [1.0], 'GSM7992408': [1.0], 'GSM7992409': [1.0], 'GSM7992410': [1.0], 'GSM7992411': [1.0], 'GSM7992412': [1.0], 'GSM7992413': [1.0], 'GSM7992414': [1.0], 'GSM7992415': [1.0], 'GSM7992416': [1.0], 'GSM7992417': [1.0], 'GSM7992418': [1.0], 'GSM7992419': [1.0], 'GSM7992420': [1.0], 'GSM7992421': [1.0], 'GSM7992422': [1.0], 'GSM7992423': [1.0], 'GSM7992424': [1.0], 'GSM7992425': [1.0], 'GSM7992426': [0.0], 'GSM7992427': [1.0], 'GSM7992428': [0.0], 'GSM7992429': [1.0], 'GSM7992430': [0.0], 'GSM7992431': [1.0], 'GSM7992432': [1.0], 'GSM7992433': [0.0], 'GSM7992434': [1.0], 'GSM7992435': [1.0], 'GSM7992436': [1.0], 'GSM7992437': [1.0], 'GSM7992438': [1.0], 'GSM7992439': [1.0], 'GSM7992440': [1.0], 'GSM7992441': [1.0], 'GSM7992442': [0.0], 'GSM7992443': [1.0], 'GSM7992444': [0.0], 'GSM7992445': [1.0], 'GSM7992446': [1.0], 'GSM7992447': [1.0], 'GSM7992448': [1.0], 'GSM7992449': [1.0], 'GSM7992450': [1.0], 'GSM7992451': [1.0], 'GSM7992452': [1.0], 'GSM7992453': [1.0], 'GSM7992454': [1.0], 'GSM7992455': [1.0], 'GSM7992456': [1.0], 'GSM7992457': [1.0], 'GSM7992458': [1.0], 'GSM7992459': [1.0], 'GSM7992460': [1.0], 'GSM7992461': [1.0], 'GSM7992462': [1.0], 'GSM7992463': [1.0], 'GSM7992464': [1.0], 'GSM7992465': [1.0], 'GSM7992466': [1.0], 'GSM7992467': [1.0], 'GSM7992468': [1.0], 'GSM7992469': [1.0], 'GSM7992470': [1.0], 'GSM7992471': [1.0], 'GSM7992472': [1.0], 'GSM7992473': [1.0], 'GSM7992474': [1.0], 'GSM7992475': [1.0], 'GSM7992476': [1.0], 'GSM7992477': [1.0], 'GSM7992478': [1.0], 'GSM7992479': [1.0], 'GSM7992480': [1.0], 'GSM7992481': [0.0], 'GSM7992482': [1.0], 'GSM7992483': [0.0], 'GSM7992484': [1.0], 'GSM7992485': [1.0], 'GSM7992486': [0.0], 'GSM7992487': [1.0], 'GSM7992488': [0.0], 'GSM7992489': [1.0], 'GSM7992490': [0.0], 'GSM7992491': [1.0], 'GSM7992492': [1.0], 'GSM7992493': [1.0], 'GSM7992494': [1.0], 'GSM7992495': [0.0], 'GSM7992496': [0.0], 'GSM7992497': [0.0], 'GSM7992498': [1.0], 'GSM7992499': [1.0], 'GSM7992500': [0.0], 'GSM7992501': [0.0], 'GSM7992502': [1.0], 'GSM7992503': [1.0], 'GSM7992504': [1.0], 'GSM7992505': [1.0], 'GSM7992506': [1.0], 'GSM7992507': [1.0], 'GSM7992508': [1.0], 'GSM7992509': [1.0], 'GSM7992510': [1.0], 'GSM7992511': [1.0], 'GSM7992512': [0.0], 'GSM7992513': [0.0], 'GSM7992514': [1.0], 'GSM7992515': [1.0], 'GSM7992516': [0.0], 'GSM7992517': [1.0], 'GSM7992518': [1.0], 'GSM7992519': [0.0], 'GSM7992520': [1.0], 'GSM7992521': [0.0], 'GSM7992522': [1.0], 'GSM7992523': [0.0], 'GSM7992524': [1.0], 'GSM7992525': [0.0], 'GSM7992526': [0.0], 'GSM7992527': [1.0], 'GSM7992528': [0.0], 'GSM7992529': [1.0], 'GSM7992530': [0.0], 'GSM7992531': [1.0], 'GSM7992532': [1.0], 'GSM7992533': [1.0], 'GSM7992534': [1.0], 'GSM7992535': [1.0], 'GSM7992536': [1.0], 'GSM7992537': [1.0], 'GSM7992538': [1.0], 'GSM7992539': [0.0], 'GSM7992540': [1.0], 'GSM7992541': [1.0], 'GSM7992542': [1.0], 'GSM7992543': [1.0], 'GSM7992544': [1.0], 'GSM7992545': [1.0], 'GSM7992546': [1.0], 'GSM7992547': [1.0], 'GSM7992548': [1.0], 'GSM7992549': [1.0], 'GSM7992550': [0.0], 'GSM7992551': [1.0], 'GSM7992552': [1.0], 'GSM7992553': [0.0], 'GSM7992554': [1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Psoriasis/clinical_data/GSE252029.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# From the background information, we can see that this dataset contains gene expression data\n",
    "# using GeneChip HT HG-U133+ PM 96-Array Plate (Affymetrix)\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# Looking at the sample characteristics dictionary:\n",
    "\n",
    "# 2.1 Trait (Psoriasis)\n",
    "# From the dictionary, we can see this is a psoriasis dataset\n",
    "# The skin type (LS = Lesional Skin, NL = Nonlesional Skin) at key 4 indicates psoriasis status\n",
    "trait_row = 4\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert skin type to binary trait status (Psoriasis)\"\"\"\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # LS (Lesional Skin) indicates psoriasis is present (1)\n",
    "    # NL (Nonlesional Skin) indicates psoriasis is not present (0)\n",
    "    if value.upper() == \"LS\":\n",
    "        return 1\n",
    "    elif value.upper() == \"NL\":\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 2.2 Age\n",
    "# There is no age information in the sample characteristics dictionary\n",
    "age_row = None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous value\"\"\"\n",
    "    # This function won't be used but needs to be defined\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# 2.3 Gender\n",
    "# There is no gender information in the sample characteristics dictionary\n",
    "gender_row = None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary value\"\"\"\n",
    "    # This function won't be used but needs to be defined\n",
    "    if pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    value = value.lower()\n",
    "    if value in [\"female\", \"f\"]:\n",
    "        return 0\n",
    "    elif value in [\"male\", \"m\"]:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort info (initial filtering)\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we need to extract clinical features\n",
    "if trait_row is not None:\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the clinical data\n",
    "    preview = preview_df(clinical_df)\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e1a6f15d",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "109748db",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:43:49.869802Z",
     "iopub.status.busy": "2025-03-25T03:43:49.869693Z",
     "iopub.status.idle": "2025-03-25T03:43:50.548807Z",
     "shell.execute_reply": "2025-03-25T03:43:50.548418Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1007_PM_s_at', '1053_PM_at', '117_PM_at', '121_PM_at', '1255_PM_g_at',\n",
      "       '1294_PM_at', '1316_PM_at', '1320_PM_at', '1405_PM_i_at', '1431_PM_at',\n",
      "       '1438_PM_at', '1487_PM_at', '1494_PM_f_at', '1552256_PM_a_at',\n",
      "       '1552257_PM_a_at', '1552258_PM_at', '1552261_PM_at', '1552263_PM_at',\n",
      "       '1552264_PM_a_at', '1552266_PM_at'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene data dimensions: 54715 genes × 181 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "983f5abf",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "7e5aa695",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:43:50.550578Z",
     "iopub.status.busy": "2025-03-25T03:43:50.550450Z",
     "iopub.status.idle": "2025-03-25T03:43:50.552376Z",
     "shell.execute_reply": "2025-03-25T03:43:50.552086Z"
    }
   },
   "outputs": [],
   "source": [
    "# These identifiers appear to be Affymetrix probe IDs (like '1007_PM_s_at') from an Affymetrix microarray platform\n",
    "# They are not standard human gene symbols and will need to be mapped to proper gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8fcf4fa8",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "53f594a5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:43:50.553873Z",
     "iopub.status.busy": "2025-03-25T03:43:50.553763Z",
     "iopub.status.idle": "2025-03-25T03:44:02.393555Z",
     "shell.execute_reply": "2025-03-25T03:44:02.392981Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation dataframe column names:\n",
      "Index(['ID', 'GB_ACC', 'SPOT_ID', 'Species Scientific Name', 'Annotation Date',\n",
      "       'Sequence Type', 'Sequence Source', 'Target Description',\n",
      "       'Representative Public ID', 'Gene Title', 'Gene Symbol',\n",
      "       'ENTREZ_GENE_ID', 'RefSeq Transcript ID',\n",
      "       'Gene Ontology Biological Process', 'Gene Ontology Cellular Component',\n",
      "       'Gene Ontology Molecular Function'],\n",
      "      dtype='object')\n",
      "\n",
      "Preview of gene annotation data:\n",
      "{'ID': ['1007_PM_s_at', '1053_PM_at', '117_PM_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757'], 'SPOT_ID': [nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Aug 20, 2010', 'Aug 20, 2010', 'Aug 20, 2010'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\"], 'Representative Public ID': ['U48705', 'M87338', 'X51757'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\"], 'Gene Symbol': ['DDR1', 'RFC2', 'HSPA6'], 'ENTREZ_GENE_ID': ['780', '5982', '3310'], 'RefSeq Transcript ID': ['NM_001954 /// NM_013993 /// NM_013994', 'NM_002914 /// NM_181471', 'NM_002155'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein amino acid phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0031100 // organ regeneration // inferred from electronic annotation /// 0043583 // ear development // inferred from electronic annotation /// 0043588 // skin development // inferred from electronic annotation /// 0051789 // response to protein stimulus // inferred from electronic annotation /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation', '0006260 // DNA replication // not recorded /// 0006260 // DNA replication // inferred from electronic annotation /// 0006297 // nucleotide-excision repair, DNA gap filling // not recorded /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation', '0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from electronic annotation /// 0005887 // integral to plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral to membrane // inferred from electronic annotation /// 0016323 // basolateral plasma membrane // inferred from electronic annotation', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // not recorded /// 0005663 // DNA replication factor C complex // inferred from direct assay /// 0005663 // DNA replication factor C complex // inferred from electronic annotation', nan], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0004872 // receptor activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005515 // protein binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0003689 // DNA clamp loader activity // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0005524 // ATP binding // traceable author statement /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract gene annotation data from the SOFT file\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Preview the gene annotation dataframe\n",
    "print(\"Gene annotation dataframe column names:\")\n",
    "print(gene_annotation.columns)\n",
    "\n",
    "# Preview the first few rows to understand the data structure\n",
    "print(\"\\nPreview of gene annotation data:\")\n",
    "annotation_preview = preview_df(gene_annotation, n=3)\n",
    "print(annotation_preview)\n",
    "\n",
    "# Maintain gene availability status as True based on previous steps\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "db393525",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "18d06898",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:44:02.395073Z",
     "iopub.status.busy": "2025-03-25T03:44:02.394942Z",
     "iopub.status.idle": "2025-03-25T03:44:03.109328Z",
     "shell.execute_reply": "2025-03-25T03:44:03.108930Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene data dimensions after mapping: 18989 genes × 181 samples\n",
      "\n",
      "Sample of gene symbols after mapping:\n",
      "Index(['A1BG', 'A1CF', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n",
      "       'AAA1', 'AAAS'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns contain the probe IDs and gene symbols\n",
    "# Looking at the previews, 'ID' column in gene_annotation matches the indices in gene_data (probe IDs)\n",
    "# 'Gene Symbol' contains the corresponding gene symbols\n",
    "\n",
    "# 2. Extract gene mapping from the annotation\n",
    "mapping_df = get_gene_mapping(\n",
    "    annotation=gene_annotation,\n",
    "    prob_col='ID',\n",
    "    gene_col='Gene Symbol'\n",
    ")\n",
    "\n",
    "# 3. Apply the gene mapping to convert probes to gene expressions\n",
    "gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)\n",
    "\n",
    "# 4. Check the dimensionality change after mapping\n",
    "print(f\"\\nGene data dimensions after mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# 5. Print a sample of the first few gene symbols after mapping\n",
    "print(\"\\nSample of gene symbols after mapping:\")\n",
    "print(gene_data.index[:10])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fe621746",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "aa138324",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:44:03.111780Z",
     "iopub.status.busy": "2025-03-25T03:44:03.111627Z",
     "iopub.status.idle": "2025-03-25T03:44:21.890634Z",
     "shell.execute_reply": "2025-03-25T03:44:21.890082Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: 18622 genes × 181 samples\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Psoriasis/gene_data/GSE252029.csv\n",
      "Extracting clinical features from the original source...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracted clinical features preview:\n",
      "{'GSM7992374': [1.0], 'GSM7992375': [0.0], 'GSM7992376': [1.0], 'GSM7992377': [0.0], 'GSM7992378': [1.0], 'GSM7992379': [0.0], 'GSM7992380': [1.0], 'GSM7992381': [0.0], 'GSM7992382': [1.0], 'GSM7992383': [0.0], 'GSM7992384': [1.0], 'GSM7992385': [0.0], 'GSM7992386': [1.0], 'GSM7992387': [0.0], 'GSM7992388': [1.0], 'GSM7992389': [1.0], 'GSM7992390': [0.0], 'GSM7992391': [1.0], 'GSM7992392': [1.0], 'GSM7992393': [0.0], 'GSM7992394': [1.0], 'GSM7992395': [1.0], 'GSM7992396': [1.0], 'GSM7992397': [1.0], 'GSM7992398': [1.0], 'GSM7992399': [1.0], 'GSM7992400': [1.0], 'GSM7992401': [1.0], 'GSM7992402': [1.0], 'GSM7992403': [1.0], 'GSM7992404': [1.0], 'GSM7992405': [1.0], 'GSM7992406': [1.0], 'GSM7992407': [1.0], 'GSM7992408': [1.0], 'GSM7992409': [1.0], 'GSM7992410': [1.0], 'GSM7992411': [1.0], 'GSM7992412': [1.0], 'GSM7992413': [1.0], 'GSM7992414': [1.0], 'GSM7992415': [1.0], 'GSM7992416': [1.0], 'GSM7992417': [1.0], 'GSM7992418': [1.0], 'GSM7992419': [1.0], 'GSM7992420': [1.0], 'GSM7992421': [1.0], 'GSM7992422': [1.0], 'GSM7992423': [1.0], 'GSM7992424': [1.0], 'GSM7992425': [1.0], 'GSM7992426': [0.0], 'GSM7992427': [1.0], 'GSM7992428': [0.0], 'GSM7992429': [1.0], 'GSM7992430': [0.0], 'GSM7992431': [1.0], 'GSM7992432': [1.0], 'GSM7992433': [0.0], 'GSM7992434': [1.0], 'GSM7992435': [1.0], 'GSM7992436': [1.0], 'GSM7992437': [1.0], 'GSM7992438': [1.0], 'GSM7992439': [1.0], 'GSM7992440': [1.0], 'GSM7992441': [1.0], 'GSM7992442': [0.0], 'GSM7992443': [1.0], 'GSM7992444': [0.0], 'GSM7992445': [1.0], 'GSM7992446': [1.0], 'GSM7992447': [1.0], 'GSM7992448': [1.0], 'GSM7992449': [1.0], 'GSM7992450': [1.0], 'GSM7992451': [1.0], 'GSM7992452': [1.0], 'GSM7992453': [1.0], 'GSM7992454': [1.0], 'GSM7992455': [1.0], 'GSM7992456': [1.0], 'GSM7992457': [1.0], 'GSM7992458': [1.0], 'GSM7992459': [1.0], 'GSM7992460': [1.0], 'GSM7992461': [1.0], 'GSM7992462': [1.0], 'GSM7992463': [1.0], 'GSM7992464': [1.0], 'GSM7992465': [1.0], 'GSM7992466': [1.0], 'GSM7992467': [1.0], 'GSM7992468': [1.0], 'GSM7992469': [1.0], 'GSM7992470': [1.0], 'GSM7992471': [1.0], 'GSM7992472': [1.0], 'GSM7992473': [1.0], 'GSM7992474': [1.0], 'GSM7992475': [1.0], 'GSM7992476': [1.0], 'GSM7992477': [1.0], 'GSM7992478': [1.0], 'GSM7992479': [1.0], 'GSM7992480': [1.0], 'GSM7992481': [0.0], 'GSM7992482': [1.0], 'GSM7992483': [0.0], 'GSM7992484': [1.0], 'GSM7992485': [1.0], 'GSM7992486': [0.0], 'GSM7992487': [1.0], 'GSM7992488': [0.0], 'GSM7992489': [1.0], 'GSM7992490': [0.0], 'GSM7992491': [1.0], 'GSM7992492': [1.0], 'GSM7992493': [1.0], 'GSM7992494': [1.0], 'GSM7992495': [0.0], 'GSM7992496': [0.0], 'GSM7992497': [0.0], 'GSM7992498': [1.0], 'GSM7992499': [1.0], 'GSM7992500': [0.0], 'GSM7992501': [0.0], 'GSM7992502': [1.0], 'GSM7992503': [1.0], 'GSM7992504': [1.0], 'GSM7992505': [1.0], 'GSM7992506': [1.0], 'GSM7992507': [1.0], 'GSM7992508': [1.0], 'GSM7992509': [1.0], 'GSM7992510': [1.0], 'GSM7992511': [1.0], 'GSM7992512': [0.0], 'GSM7992513': [0.0], 'GSM7992514': [1.0], 'GSM7992515': [1.0], 'GSM7992516': [0.0], 'GSM7992517': [1.0], 'GSM7992518': [1.0], 'GSM7992519': [0.0], 'GSM7992520': [1.0], 'GSM7992521': [0.0], 'GSM7992522': [1.0], 'GSM7992523': [0.0], 'GSM7992524': [1.0], 'GSM7992525': [0.0], 'GSM7992526': [0.0], 'GSM7992527': [1.0], 'GSM7992528': [0.0], 'GSM7992529': [1.0], 'GSM7992530': [0.0], 'GSM7992531': [1.0], 'GSM7992532': [1.0], 'GSM7992533': [1.0], 'GSM7992534': [1.0], 'GSM7992535': [1.0], 'GSM7992536': [1.0], 'GSM7992537': [1.0], 'GSM7992538': [1.0], 'GSM7992539': [0.0], 'GSM7992540': [1.0], 'GSM7992541': [1.0], 'GSM7992542': [1.0], 'GSM7992543': [1.0], 'GSM7992544': [1.0], 'GSM7992545': [1.0], 'GSM7992546': [1.0], 'GSM7992547': [1.0], 'GSM7992548': [1.0], 'GSM7992549': [1.0], 'GSM7992550': [0.0], 'GSM7992551': [1.0], 'GSM7992552': [1.0], 'GSM7992553': [0.0], 'GSM7992554': [1.0]}\n",
      "Clinical data shape: (1, 181)\n",
      "Clinical features saved to ../../output/preprocess/Psoriasis/clinical_data/GSE252029.csv\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (181, 18623)\n",
      "Handling missing values...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (181, 18623)\n",
      "\n",
      "Checking for bias in feature variables:\n",
      "For the feature 'Psoriasis', the least common label is '0.0' with 38 occurrences. This represents 20.99% of the dataset.\n",
      "The distribution of the feature 'Psoriasis' in this dataset is fine.\n",
      "\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Psoriasis/GSE252029.csv\n",
      "Final dataset shape: (181, 18623)\n"
     ]
    }
   ],
   "source": [
    "# 1. Check if gene data is available after mapping\n",
    "if gene_data.shape[0] == 0:\n",
    "    print(\"Error: Gene expression matrix is empty after mapping.\")\n",
    "    # Mark the dataset as not usable due to lack of gene expression data\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=False,  # No usable gene data\n",
    "        is_trait_available=True,\n",
    "        is_biased=True,\n",
    "        df=pd.DataFrame(),\n",
    "        note=\"Failed to map probe IDs to gene symbols. The annotation format may not be compatible with the extraction methods.\"\n",
    "    )\n",
    "    print(\"Dataset deemed not usable due to lack of gene expression data.\")\n",
    "else:\n",
    "    # Only proceed with normalization if we have gene data\n",
    "    print(\"Normalizing gene symbols...\")\n",
    "    gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
    "\n",
    "    # Save the normalized gene data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data_normalized.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "    \n",
    "    # Extract clinical features from the original data source\n",
    "    print(\"Extracting clinical features from the original source...\")\n",
    "    # Get background information and clinical data again\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    print(\"Extracted clinical features preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
    "    \n",
    "    # Save the extracted clinical features\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Link clinical and genetic data\n",
    "    print(\"Linking clinical and genetic data...\")\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # Check if the linked data has adequate data\n",
    "    if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4:  # 4 is an arbitrary small number\n",
    "        print(\"Error: Linked data has insufficient samples or features.\")\n",
    "        is_usable = validate_and_save_cohort_info(\n",
    "            is_final=True,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=True,\n",
    "            is_trait_available=True,\n",
    "            is_biased=True,\n",
    "            df=linked_data,\n",
    "            note=\"Failed to properly link gene expression data with clinical features.\"\n",
    "        )\n",
    "        print(\"Dataset deemed not usable due to linking failure.\")\n",
    "    else:\n",
    "        # Handle missing values systematically\n",
    "        print(\"Handling missing values...\")\n",
    "        linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n",
    "        \n",
    "        # Check if there are still samples after missing value handling\n",
    "        if linked_data_clean.shape[0] == 0:\n",
    "            print(\"Error: No samples remain after handling missing values.\")\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=True,\n",
    "                df=pd.DataFrame(),\n",
    "                note=\"All samples were removed during missing value handling.\"\n",
    "            )\n",
    "            print(\"Dataset deemed not usable as all samples were filtered out.\")\n",
    "        else:\n",
    "            # Check if the dataset is biased\n",
    "            print(\"\\nChecking for bias in feature variables:\")\n",
    "            is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n",
    "            \n",
    "            # Conduct final quality validation\n",
    "            is_usable = validate_and_save_cohort_info(\n",
    "                is_final=True,\n",
    "                cohort=cohort,\n",
    "                info_path=json_path,\n",
    "                is_gene_available=True,\n",
    "                is_trait_available=True,\n",
    "                is_biased=is_biased,\n",
    "                df=linked_data_final,\n",
    "                note=\"Dataset contains gene expression data for Crohn's Disease patients, examining response to Infliximab treatment.\"\n",
    "            )\n",
    "            \n",
    "            # Save linked data if usable\n",
    "            if is_usable:\n",
    "                os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "                linked_data_final.to_csv(out_data_file)\n",
    "                print(f\"Linked data saved to {out_data_file}\")\n",
    "                print(f\"Final dataset shape: {linked_data_final.shape}\")\n",
    "            else:\n",
    "                print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}