File size: 12,276 Bytes
9fe78b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c9c24e17",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Psoriatic_Arthritis\"\n",
    "cohort = \"GSE142049\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Psoriatic_Arthritis\"\n",
    "in_cohort_dir = \"../../input/GEO/Psoriatic_Arthritis/GSE142049\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Psoriatic_Arthritis/GSE142049.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Psoriatic_Arthritis/gene_data/GSE142049.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Psoriatic_Arthritis/clinical_data/GSE142049.csv\"\n",
    "json_path = \"../../output/preprocess/Psoriatic_Arthritis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1783c18b",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ca0a1099",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ac8d5a01",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "47517969",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Analyze the dataset to determine availability of gene expression and clinical data\n",
    "\n",
    "# 1. Gene Expression Data\n",
    "# Based on the background information, this dataset contains transcriptional data (RNA)\n",
    "# from CD19+ B cells, which indicates it contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Identify rows in the sample characteristics dictionary for trait, age, and gender\n",
    "\n",
    "# For the trait (Psoriatic Arthritis), we can find it in the working_diagnosis field (key 6)\n",
    "trait_row = 6\n",
    "\n",
    "# Age information is available in key 2\n",
    "age_row = 2\n",
    "\n",
    "# Gender information is available in key 1\n",
    "gender_row = 1\n",
    "\n",
    "# 2.2 Create conversion functions for each variable\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert the working_diagnosis value to a binary indicator for Psoriatic Arthritis.\n",
    "    1 if the patient has Psoriatic Arthritis, 0 otherwise.\n",
    "    \"\"\"\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        diagnosis = value.split(\":\", 1)[1].strip()\n",
    "        if diagnosis == \"Psoriatic Arthritis\":\n",
    "            return 1\n",
    "        else:\n",
    "            return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"\n",
    "    Convert age string to a numerical value.\n",
    "    \"\"\"\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        age_str = value.split(\":\", 1)[1].strip()\n",
    "        try:\n",
    "            return int(age_str)\n",
    "        except ValueError:\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender string to binary: 0 for female, 1 for male.\n",
    "    \"\"\"\n",
    "    if isinstance(value, str) and \":\" in value:\n",
    "        gender = value.split(\":\", 1)[1].strip()\n",
    "        if gender.upper() == \"F\":\n",
    "            return 0\n",
    "        elif gender.upper() == \"M\":\n",
    "            return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata - Initial Filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the library function\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(clinical_features)\n",
    "    print(\"Preview of extracted clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical features to a CSV file\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4dea5755",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3d6ae7d7",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9b0fccbf",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fbc5de3a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers, I can see they are ILMN_ prefixed identifiers.\n",
    "# These are Illumina BeadArray probe IDs, not standard human gene symbols.\n",
    "# Illumina IDs like \"ILMN_1343291\" need to be mapped to human gene symbols.\n",
    "# These IDs are specific to Illumina microarray platforms and require mapping.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "035e8f1b",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b827a264",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a47beafc",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fdc931b3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify the relevant columns from the gene annotation dataframe\n",
    "# The 'ID' column contains probe IDs (e.g., ILMN_...) which match the gene_data index\n",
    "# The 'Symbol' column contains the human gene symbols we need to map to\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting the needed columns\n",
    "mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "print(\"Gene mapping preview:\")\n",
    "print(preview_df(mapping_data))\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene-level expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "print(\"After mapping to gene symbols, gene data shape:\", gene_data.shape)\n",
    "print(\"First 10 gene symbols after mapping:\")\n",
    "print(gene_data.index[:10])\n",
    "\n",
    "# Store the gene data to a CSV file\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0f063d68",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "35687c8f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Re-extract clinical features since we need it for linking\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression from endothelial cells derived from circulating progenitors of RA patients\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    print(f\"Data is usable. Saving to {out_data_file}\")\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "else:\n",
    "    print(\"Data is not usable. Not saving linked data file.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}