File size: 40,811 Bytes
9fe78b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "686d0db4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:12.445430Z",
"iopub.status.busy": "2025-03-25T03:46:12.445325Z",
"iopub.status.idle": "2025-03-25T03:46:12.611754Z",
"shell.execute_reply": "2025-03-25T03:46:12.611413Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Rectal_Cancer\"\n",
"cohort = \"GSE109057\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Rectal_Cancer\"\n",
"in_cohort_dir = \"../../input/GEO/Rectal_Cancer/GSE109057\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Rectal_Cancer/GSE109057.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Rectal_Cancer/gene_data/GSE109057.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Rectal_Cancer/clinical_data/GSE109057.csv\"\n",
"json_path = \"../../output/preprocess/Rectal_Cancer/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "13d79464",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2f74101c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:12.613170Z",
"iopub.status.busy": "2025-03-25T03:46:12.613028Z",
"iopub.status.idle": "2025-03-25T03:46:12.829610Z",
"shell.execute_reply": "2025-03-25T03:46:12.829270Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Transcriptome analysis by expression microarrays of rectal cancer derived from the Cancer Institute Hospital of Japanese Foundation for Cancer Research\"\n",
"!Series_summary\t\"We performed the expression microrarray experiments for mRNA of rectal cancer tissue.\"\n",
"!Series_overall_design\t\"Messenger RNA were extracted from primary tumor of 90 rectal cancer patients, hybridized and scanned with Affymetrix PrimeView Human Gene Expression Array. There are 91 samples because one sample was hybridized twice, once in each batch, and is represented by GSM2928780 and GSM2928794.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: rectal cancer'], 1: ['Sex: M', 'Sex: F'], 2: ['age: 35 <= age < 40', 'age: 30 <= age < 35', 'age: 55 <= age < 60', 'age: 45 <= age < 50', 'age: 65 <= age < 70', 'age: 75 <= age < 80', 'age: 70 <= age < 75', 'age: 60 <= age < 65', 'age: 50 <= age < 55', 'age: 80 <= age < 85', 'age: 40 <= age < 45'], 3: ['batch: Batch 1', 'batch: Batch 2']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "cd2dfc76",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1780f85d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:12.830740Z",
"iopub.status.busy": "2025-03-25T03:46:12.830634Z",
"iopub.status.idle": "2025-03-25T03:46:12.844674Z",
"shell.execute_reply": "2025-03-25T03:46:12.844399Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical Data Preview:\n",
"{'GSM2928730': [1.0, 37.5, 1.0], 'GSM2928731': [1.0, 32.5, 1.0], 'GSM2928732': [1.0, 57.5, 1.0], 'GSM2928733': [1.0, 47.5, 1.0], 'GSM2928734': [1.0, 67.5, 0.0], 'GSM2928735': [1.0, 77.5, 1.0], 'GSM2928736': [1.0, 57.5, 1.0], 'GSM2928737': [1.0, 47.5, 1.0], 'GSM2928738': [1.0, 72.5, 1.0], 'GSM2928739': [1.0, 62.5, 1.0], 'GSM2928740': [1.0, 52.5, 1.0], 'GSM2928741': [1.0, 32.5, 1.0], 'GSM2928742': [1.0, 67.5, 1.0], 'GSM2928743': [1.0, 47.5, 1.0], 'GSM2928744': [1.0, 67.5, 1.0], 'GSM2928745': [1.0, 57.5, 1.0], 'GSM2928746': [1.0, 47.5, 1.0], 'GSM2928747': [1.0, 47.5, 1.0], 'GSM2928748': [1.0, 72.5, 1.0], 'GSM2928749': [1.0, 67.5, 1.0], 'GSM2928750': [1.0, 47.5, 1.0], 'GSM2928751': [1.0, 67.5, 1.0], 'GSM2928752': [1.0, 67.5, 0.0], 'GSM2928753': [1.0, 57.5, 1.0], 'GSM2928754': [1.0, 52.5, 1.0], 'GSM2928755': [1.0, 67.5, 1.0], 'GSM2928756': [1.0, 47.5, 1.0], 'GSM2928757': [1.0, 62.5, 1.0], 'GSM2928758': [1.0, 62.5, 1.0], 'GSM2928759': [1.0, 67.5, 0.0], 'GSM2928760': [1.0, 62.5, 1.0], 'GSM2928761': [1.0, 67.5, 0.0], 'GSM2928762': [1.0, 57.5, 1.0], 'GSM2928763': [1.0, 57.5, 1.0], 'GSM2928764': [1.0, 62.5, 1.0], 'GSM2928765': [1.0, 52.5, 1.0], 'GSM2928766': [1.0, 82.5, 0.0], 'GSM2928767': [1.0, 57.5, 0.0], 'GSM2928768': [1.0, 47.5, 0.0], 'GSM2928769': [1.0, 72.5, 1.0], 'GSM2928770': [1.0, 42.5, 1.0], 'GSM2928771': [1.0, 67.5, 0.0], 'GSM2928772': [1.0, 62.5, 1.0], 'GSM2928773': [1.0, 57.5, 1.0], 'GSM2928774': [1.0, 62.5, 1.0], 'GSM2928775': [1.0, 52.5, 1.0], 'GSM2928776': [1.0, 52.5, 1.0], 'GSM2928777': [1.0, 62.5, 0.0], 'GSM2928778': [1.0, 47.5, 1.0], 'GSM2928779': [1.0, 62.5, 1.0], 'GSM2928780': [1.0, 67.5, 1.0], 'GSM2928781': [1.0, 67.5, 1.0], 'GSM2928782': [1.0, 67.5, 1.0], 'GSM2928783': [1.0, 62.5, 1.0], 'GSM2928784': [1.0, 77.5, 0.0], 'GSM2928785': [1.0, 62.5, 0.0], 'GSM2928786': [1.0, 57.5, 1.0], 'GSM2928787': [1.0, 62.5, 0.0], 'GSM2928788': [1.0, 57.5, 0.0], 'GSM2928789': [1.0, 77.5, 0.0], 'GSM2928790': [1.0, 62.5, 0.0], 'GSM2928791': [1.0, 47.5, 1.0], 'GSM2928792': [1.0, 62.5, 1.0], 'GSM2928793': [1.0, 62.5, 1.0], 'GSM2928794': [1.0, 67.5, 1.0], 'GSM2928795': [1.0, 47.5, 0.0], 'GSM2928796': [1.0, 32.5, 1.0], 'GSM2928797': [1.0, 47.5, 1.0], 'GSM2928798': [1.0, 52.5, 0.0], 'GSM2928799': [1.0, 57.5, 1.0], 'GSM2928800': [1.0, 67.5, 1.0], 'GSM2928801': [1.0, 47.5, 1.0], 'GSM2928802': [1.0, 62.5, 0.0], 'GSM2928803': [1.0, 52.5, 0.0], 'GSM2928804': [1.0, 72.5, 0.0], 'GSM2928805': [1.0, 67.5, 1.0], 'GSM2928806': [1.0, 57.5, 0.0], 'GSM2928807': [1.0, 62.5, 0.0], 'GSM2928808': [1.0, 47.5, 0.0], 'GSM2928809': [1.0, 42.5, 1.0], 'GSM2928810': [1.0, 37.5, 0.0], 'GSM2928811': [1.0, 72.5, 0.0], 'GSM2928812': [1.0, 72.5, 1.0], 'GSM2928813': [1.0, 72.5, 1.0], 'GSM2928814': [1.0, 77.5, 0.0], 'GSM2928815': [1.0, 77.5, 0.0], 'GSM2928816': [1.0, 72.5, 1.0], 'GSM2928817': [1.0, 62.5, 1.0], 'GSM2928818': [1.0, 37.5, 1.0], 'GSM2928819': [1.0, 52.5, 1.0], 'GSM2928820': [1.0, 72.5, 1.0]}\n",
"Clinical data saved to ../../output/preprocess/Rectal_Cancer/clinical_data/GSE109057.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on background information, this dataset contains gene expression data from Affymetrix arrays\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Rectal Cancer is the trait we're studying, and it's available in row 0\n",
"trait_row = 0\n",
"\n",
"# Gender data is available in row 1\n",
"gender_row = 1\n",
"\n",
"# Age data is available in row 2\n",
"age_row = 2\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" # All samples are rectal cancer \"tissue: rectal cancer\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon\n",
" parts = value.split(\": \")\n",
" if len(parts) < 2:\n",
" return None\n",
" \n",
" tissue = parts[1].strip()\n",
" if \"rectal cancer\" in tissue.lower():\n",
" return 1\n",
" else:\n",
" return 0\n",
"\n",
"def convert_gender(value):\n",
" # Gender data in format \"Sex: M\" or \"Sex: F\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon\n",
" parts = value.split(\": \")\n",
" if len(parts) < 2:\n",
" return None\n",
" \n",
" gender = parts[1].strip()\n",
" if gender == 'M':\n",
" return 1\n",
" elif gender == 'F':\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" # Age data in format \"age: X <= age < Y\"\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon\n",
" parts = value.split(\": \")\n",
" if len(parts) < 2:\n",
" return None\n",
" \n",
" age_range = parts[1].strip()\n",
" # Extract the lower and upper bounds of the age range\n",
" try:\n",
" age_parts = age_range.split(\" \")\n",
" lower_bound = int(age_parts[0])\n",
" upper_bound = int(age_parts[-1])\n",
" # Return the midpoint of the age range\n",
" return (lower_bound + upper_bound) / 2\n",
" except:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# trait_row is not None, so is_trait_available should be True\n",
"is_trait_available = trait_row is not None\n",
"\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we proceed with clinical feature extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" clinical_df = geo_select_clinical_features(\n",
" clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview and save clinical data\n",
" print(\"Clinical Data Preview:\")\n",
" print(preview_df(clinical_df))\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save clinical data to CSV\n",
" clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "259cabe1",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "2606920f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:12.845694Z",
"iopub.status.busy": "2025-03-25T03:46:12.845593Z",
"iopub.status.idle": "2025-03-25T03:46:13.215570Z",
"shell.execute_reply": "2025-03-25T03:46:13.215202Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at',\n",
" '11715104_s_at', '11715105_at', '11715106_x_at', '11715107_s_at',\n",
" '11715108_x_at', '11715109_at', '11715110_at', '11715111_s_at',\n",
" '11715112_at', '11715113_x_at', '11715114_x_at', '11715115_s_at',\n",
" '11715116_s_at', '11715117_x_at', '11715118_s_at', '11715119_s_at'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "9e0f8f4c",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "94682d46",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:13.216852Z",
"iopub.status.busy": "2025-03-25T03:46:13.216733Z",
"iopub.status.idle": "2025-03-25T03:46:13.218560Z",
"shell.execute_reply": "2025-03-25T03:46:13.218284Z"
}
},
"outputs": [],
"source": [
"# These appear to be probe set IDs from an Affymetrix microarray platform, not human gene symbols.\n",
"# The format \"11715100_at\" is typical of Affymetrix probe identifiers.\n",
"# These will need to be mapped to standard human gene symbols for analysis.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "49f7a5e2",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "b55cc2b8",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:13.219537Z",
"iopub.status.busy": "2025-03-25T03:46:13.219437Z",
"iopub.status.idle": "2025-03-25T03:46:25.748864Z",
"shell.execute_reply": "2025-03-25T03:46:25.748471Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at', '11715104_s_at'], 'GeneChip Array': ['Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array'], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['30-Mar-16', '30-Mar-16', '30-Mar-16', '30-Mar-16', '30-Mar-16'], 'Sequence Type': ['Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database'], 'Transcript ID(Array Design)': ['g21264570', 'g21264570', 'g21264570', 'g22748780', 'g30039713'], 'Target Description': ['g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g22748780 /TID=g22748780 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g22748780 /REP_ORG=Homo sapiens', 'g30039713 /TID=g30039713 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g30039713 /REP_ORG=Homo sapiens'], 'GB_ACC': [nan, nan, nan, nan, nan], 'GI': [21264570.0, 21264570.0, 21264570.0, 22748780.0, 30039713.0], 'Representative Public ID': ['g21264570', 'g21264570', 'g21264570', 'g22748780', 'g30039713'], 'Archival UniGene Cluster': ['---', '---', '---', '---', '---'], 'UniGene ID': ['Hs.247813', 'Hs.247813', 'Hs.247813', 'Hs.465643', 'Hs.352515'], 'Genome Version': ['February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)'], 'Alignments': ['chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr19:4639529-5145579 (+) // 48.53 // p13.3', 'chr17:72920369-72929640 (+) // 100.0 // q25.1'], 'Gene Title': ['histone cluster 1, H3g', 'histone cluster 1, H3g', 'histone cluster 1, H3g', 'tumor necrosis factor, alpha-induced protein 8-like 1', 'otopetrin 2'], 'Gene Symbol': ['HIST1H3G', 'HIST1H3G', 'HIST1H3G', 'TNFAIP8L1', 'OTOP2'], 'Chromosomal Location': ['chr6p22.2', 'chr6p22.2', 'chr6p22.2', 'chr19p13.3', 'chr17q25.1'], 'Unigene Cluster Type': ['full length', 'full length', 'full length', 'full length', 'full length'], 'Ensembl': ['ENSG00000273983 /// OTTHUMG00000014436', 'ENSG00000273983 /// OTTHUMG00000014436', 'ENSG00000273983 /// OTTHUMG00000014436', 'ENSG00000185361 /// OTTHUMG00000182013', 'ENSG00000183034 /// OTTHUMG00000179215'], 'Entrez Gene': ['8355', '8355', '8355', '126282', '92736'], 'SwissProt': ['P68431', 'P68431', 'P68431', 'Q8WVP5', 'Q7RTS6'], 'EC': ['---', '---', '---', '---', '---'], 'OMIM': ['602815', '602815', '602815', '615869', '607827'], 'RefSeq Protein ID': ['NP_003525', 'NP_003525', 'NP_003525', 'NP_001161414 /// NP_689575 /// XP_005259544 /// XP_011525982', 'NP_835454 /// XP_011523781'], 'RefSeq Transcript ID': ['NM_003534', 'NM_003534', 'NM_003534', 'NM_001167942 /// NM_152362 /// XM_005259487 /// XM_011527680', 'NM_178160 /// XM_011525479'], 'Gene Ontology Biological Process': ['0000183 // chromatin silencing at rDNA // traceable author statement /// 0002230 // positive regulation of defense response to virus by host // inferred from mutant phenotype /// 0006325 // chromatin organization // traceable author statement /// 0006334 // nucleosome assembly // inferred from direct assay /// 0006334 // nucleosome assembly // inferred from mutant phenotype /// 0006335 // DNA replication-dependent nucleosome assembly // inferred from direct assay /// 0007264 // small GTPase mediated signal transduction // traceable author statement /// 0007596 // blood coagulation // traceable author statement /// 0010467 // gene expression // traceable author statement /// 0031047 // gene silencing by RNA // traceable author statement /// 0032776 // DNA methylation on cytosine // traceable author statement /// 0040029 // regulation of gene expression, epigenetic // traceable author statement /// 0044267 // cellular protein metabolic process // traceable author statement /// 0045814 // negative regulation of gene expression, epigenetic // traceable author statement /// 0051290 // protein heterotetramerization // inferred from direct assay /// 0060968 // regulation of gene silencing // inferred from direct assay /// 0098792 // xenophagy // inferred from mutant phenotype', '0000183 // chromatin silencing at rDNA // traceable author statement /// 0002230 // positive regulation of defense response to virus by host // inferred from mutant phenotype /// 0006325 // chromatin organization // traceable author statement /// 0006334 // nucleosome assembly // inferred from direct assay /// 0006334 // nucleosome assembly // inferred from mutant phenotype /// 0006335 // DNA replication-dependent nucleosome assembly // inferred from direct assay /// 0007264 // small GTPase mediated signal transduction // traceable author statement /// 0007596 // blood coagulation // traceable author statement /// 0010467 // gene expression // traceable author statement /// 0031047 // gene silencing by RNA // traceable author statement /// 0032776 // DNA methylation on cytosine // traceable author statement /// 0040029 // regulation of gene expression, epigenetic // traceable author statement /// 0044267 // cellular protein metabolic process // traceable author statement /// 0045814 // negative regulation of gene expression, epigenetic // traceable author statement /// 0051290 // protein heterotetramerization // inferred from direct assay /// 0060968 // regulation of gene silencing // inferred from direct assay /// 0098792 // xenophagy // inferred from mutant phenotype', '0000183 // chromatin silencing at rDNA // traceable author statement /// 0002230 // positive regulation of defense response to virus by host // inferred from mutant phenotype /// 0006325 // chromatin organization // traceable author statement /// 0006334 // nucleosome assembly // inferred from direct assay /// 0006334 // nucleosome assembly // inferred from mutant phenotype /// 0006335 // DNA replication-dependent nucleosome assembly // inferred from direct assay /// 0007264 // small GTPase mediated signal transduction // traceable author statement /// 0007596 // blood coagulation // traceable author statement /// 0010467 // gene expression // traceable author statement /// 0031047 // gene silencing by RNA // traceable author statement /// 0032776 // DNA methylation on cytosine // traceable author statement /// 0040029 // regulation of gene expression, epigenetic // traceable author statement /// 0044267 // cellular protein metabolic process // traceable author statement /// 0045814 // negative regulation of gene expression, epigenetic // traceable author statement /// 0051290 // protein heterotetramerization // inferred from direct assay /// 0060968 // regulation of gene silencing // inferred from direct assay /// 0098792 // xenophagy // inferred from mutant phenotype', '0032007 // negative regulation of TOR signaling // not recorded /// 0032007 // negative regulation of TOR signaling // inferred from sequence or structural similarity', '---'], 'Gene Ontology Cellular Component': ['0000228 // nuclear chromosome // inferred from direct assay /// 0000786 // nucleosome // inferred from direct assay /// 0000788 // nuclear nucleosome // inferred from direct assay /// 0005576 // extracellular region // traceable author statement /// 0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // traceable author statement /// 0005694 // chromosome // inferred from electronic annotation /// 0016020 // membrane // inferred from direct assay /// 0043234 // protein complex // inferred from direct assay /// 0070062 // extracellular exosome // inferred from direct assay', '0000228 // nuclear chromosome // inferred from direct assay /// 0000786 // nucleosome // inferred from direct assay /// 0000788 // nuclear nucleosome // inferred from direct assay /// 0005576 // extracellular region // traceable author statement /// 0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // traceable author statement /// 0005694 // chromosome // inferred from electronic annotation /// 0016020 // membrane // inferred from direct assay /// 0043234 // protein complex // inferred from direct assay /// 0070062 // extracellular exosome // inferred from direct assay', '0000228 // nuclear chromosome // inferred from direct assay /// 0000786 // nucleosome // inferred from direct assay /// 0000788 // nuclear nucleosome // inferred from direct assay /// 0005576 // extracellular region // traceable author statement /// 0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // traceable author statement /// 0005694 // chromosome // inferred from electronic annotation /// 0016020 // membrane // inferred from direct assay /// 0043234 // protein complex // inferred from direct assay /// 0070062 // extracellular exosome // inferred from direct assay', '0005737 // cytoplasm // not recorded /// 0005737 // cytoplasm // inferred from sequence or structural similarity', '0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0042393 // histone binding // inferred from physical interaction /// 0046982 // protein heterodimerization activity // inferred from electronic annotation', '0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0042393 // histone binding // inferred from physical interaction /// 0046982 // protein heterodimerization activity // inferred from electronic annotation', '0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0042393 // histone binding // inferred from physical interaction /// 0046982 // protein heterodimerization activity // inferred from electronic annotation', '0005515 // protein binding // inferred from physical interaction', '---'], 'Pathway': ['---', '---', '---', '---', '---'], 'InterPro': ['IPR007125 // Histone H2A/H2B/H3 // 9.3E-34 /// IPR007125 // Histone H2A/H2B/H3 // 1.7E-37', 'IPR007125 // Histone H2A/H2B/H3 // 9.3E-34 /// IPR007125 // Histone H2A/H2B/H3 // 1.7E-37', 'IPR007125 // Histone H2A/H2B/H3 // 9.3E-34 /// IPR007125 // Histone H2A/H2B/H3 // 1.7E-37', 'IPR008477 // Protein of unknown function DUF758 // 8.4E-86 /// IPR008477 // Protein of unknown function DUF758 // 6.8E-90', 'IPR004878 // Otopetrin // 9.4E-43 /// IPR004878 // Otopetrin // 9.4E-43 /// IPR004878 // Otopetrin // 9.4E-43 /// IPR004878 // Otopetrin // 3.9E-18 /// IPR004878 // Otopetrin // 3.8E-20 /// IPR004878 // Otopetrin // 5.2E-16'], 'Annotation Description': ['This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 4 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 4 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 4 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 9 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 6 transcripts. // false // Matching Probes // A'], 'Annotation Transcript Cluster': ['ENST00000614378(11),NM_003534(11),OTTHUMT00000040099(11),uc003nhi.3', 'ENST00000614378(11),NM_003534(11),OTTHUMT00000040099(11),uc003nhi.3', 'ENST00000614378(11),NM_003534(11),OTTHUMT00000040099(11),uc003nhi.3', 'BC017672(11),BC044250(9),ENST00000327473(11),ENST00000536716(11),NM_001167942(11),NM_152362(11),OTTHUMT00000458662(11),uc002max.3,uc021une.1', 'ENST00000331427(11),ENST00000580223(11),NM_178160(11),OTTHUMT00000445306(11),uc010wrp.2,XM_011525479(11)'], 'Transcript Assignments': ['ENST00000614378 // ensembl_havana_transcript:known chromosome:GRCh38:6:26269405:26271815:-1 gene:ENSG00000273983 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // --- /// OTTHUMT00000040099 // otter:known chromosome:VEGA61:6:26269405:26271815:-1 gene:OTTHUMG00000014436 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc003nhi.3 // --- // ucsc_genes // 11 // ---', 'ENST00000614378 // ensembl_havana_transcript:known chromosome:GRCh38:6:26269405:26271815:-1 gene:ENSG00000273983 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// GENSCAN00000029819 // cdna:genscan chromosome:GRCh38:6:26270974:26271384:-1 transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // --- /// OTTHUMT00000040099 // otter:known chromosome:VEGA61:6:26269405:26271815:-1 gene:OTTHUMG00000014436 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc003nhi.3 // --- // ucsc_genes // 11 // ---', 'ENST00000614378 // ensembl_havana_transcript:known chromosome:GRCh38:6:26269405:26271815:-1 gene:ENSG00000273983 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // --- /// OTTHUMT00000040099 // otter:known chromosome:VEGA61:6:26269405:26271815:-1 gene:OTTHUMG00000014436 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc003nhi.3 // --- // ucsc_genes // 11 // ---', 'BC017672 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1, mRNA (cDNA clone MGC:17791 IMAGE:3885999), complete cds. // gb // 11 // --- /// BC044250 // accn=BC044250 class=mRNAlike lncRNA name=Human lncRNA ref=JounralRNA transcriptId=673 cpcScore=-0.1526100 cnci=-0.1238602 // noncode // 9 // --- /// BC044250 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1, mRNA (cDNA clone IMAGE:5784807). // gb // 9 // --- /// ENST00000327473 // ensembl_havana_transcript:known chromosome:GRCh38:19:4639518:4655568:1 gene:ENSG00000185361 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// ENST00000536716 // ensembl:known chromosome:GRCh38:19:4640017:4655568:1 gene:ENSG00000185361 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_001167942 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1 (TNFAIP8L1), transcript variant 1, mRNA. // refseq // 11 // --- /// NM_152362 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1 (TNFAIP8L1), transcript variant 2, mRNA. // refseq // 11 // --- /// NONHSAT060631 // Non-coding transcript identified by NONCODE: Exonic // noncode // 9 // --- /// OTTHUMT00000458662 // otter:known chromosome:VEGA61:19:4639518:4655568:1 gene:OTTHUMG00000182013 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc002max.3 // --- // ucsc_genes // 11 // --- /// uc021une.1 // --- // ucsc_genes // 11 // ---', 'ENST00000331427 // ensembl:known chromosome:GRCh38:17:74924275:74933911:1 gene:ENSG00000183034 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// ENST00000580223 // havana:known chromosome:GRCh38:17:74924603:74933912:1 gene:ENSG00000183034 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// GENSCAN00000013715 // cdna:genscan chromosome:GRCh38:17:74924633:74933545:1 transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_178160 // Homo sapiens otopetrin 2 (OTOP2), mRNA. // refseq // 11 // --- /// OTTHUMT00000445306 // otter:known chromosome:VEGA61:17:74924603:74933912:1 gene:OTTHUMG00000179215 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc010wrp.2 // --- // ucsc_genes // 11 // --- /// XM_011525479 // PREDICTED: Homo sapiens otopetrin 2 (OTOP2), transcript variant X1, mRNA. // refseq // 11 // ---'], 'Annotation Notes': ['---', '---', 'GENSCAN00000029819 // ensembl // 4 // Cross Hyb Matching Probes', '---', '---'], 'SPOT_ID': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "baddc99a",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "0370eecd",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:25.750123Z",
"iopub.status.busy": "2025-03-25T03:46:25.749994Z",
"iopub.status.idle": "2025-03-25T03:46:26.181913Z",
"shell.execute_reply": "2025-03-25T03:46:26.181583Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping preview (first 5 rows):\n",
" ID Gene\n",
"0 11715100_at HIST1H3G\n",
"1 11715101_s_at HIST1H3G\n",
"2 11715102_x_at HIST1H3G\n",
"3 11715103_x_at TNFAIP8L1\n",
"4 11715104_s_at OTOP2\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene data preview (first 10 genes):\n",
"Index(['A1BG', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAAS',\n",
" 'AACS', 'AACSP1'],\n",
" dtype='object', name='Gene')\n",
"\n",
"Gene data shape: (19963, 91)\n"
]
}
],
"source": [
"# 1. Based on the preview, it looks like:\n",
"# - 'ID' column in gene_annotation contains the same probe IDs as seen in the gene expression data\n",
"# - 'Gene Symbol' column contains the gene symbols we want to map to\n",
"\n",
"# 2. Get a gene mapping dataframe by extracting these two columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
"\n",
"# Print a preview of the mapping data for verification\n",
"print(\"Gene mapping preview (first 5 rows):\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Convert probe-level measurements to gene expression data by applying the gene mapping\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print the first 10 gene symbols to verify the conversion\n",
"print(\"\\nGene data preview (first 10 genes):\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Print the shape of the converted dataset\n",
"print(f\"\\nGene data shape: {gene_data.shape}\")\n"
]
},
{
"cell_type": "markdown",
"id": "7d8dbdac",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f906846f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:46:26.183217Z",
"iopub.status.busy": "2025-03-25T03:46:26.183103Z",
"iopub.status.idle": "2025-03-25T03:46:27.391910Z",
"shell.execute_reply": "2025-03-25T03:46:27.391559Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data shape: (19758, 91)\n",
"First few normalized gene symbols: ['A1BG', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAAS', 'AACS', 'AACSP1']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Rectal_Cancer/gene_data/GSE109057.csv\n",
"Clinical features loaded from ../../output/preprocess/Rectal_Cancer/clinical_data/GSE109057.csv\n",
"Clinical features shape: (3, 91)\n",
"Linked data shape: (94, 19849)\n",
"First few columns: ['GSM2928730', 'GSM2928731', 'GSM2928732', 'GSM2928733', 'GSM2928734']\n",
"Columns in linked_data: ['GSM2928730', 'GSM2928731', 'GSM2928732', 'GSM2928733', 'GSM2928734']\n",
"Using trait column: GSM2928730\n",
"Shape after handling missing values: (3, 91)\n",
"For the feature 'GSM2928730', the least common label is '37.5' with 1 occurrences. This represents 33.33% of the dataset.\n",
"The distribution of the feature 'GSM2928730' in this dataset is fine.\n",
"\n",
"A new JSON file was created at: ../../output/preprocess/Rectal_Cancer/cohort_info.json\n",
"Linked data saved to ../../output/preprocess/Rectal_Cancer/GSE109057.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the obtained gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# Get clinical data from previous step\n",
"# Load the clinical features from the saved file\n",
"clinical_file_path = out_clinical_data_file\n",
"if os.path.exists(clinical_file_path):\n",
" clinical_features = pd.read_csv(clinical_file_path)\n",
" print(f\"Clinical features loaded from {clinical_file_path}\")\n",
" print(f\"Clinical features shape: {clinical_features.shape}\")\n",
"else:\n",
" # If file doesn't exist, we need to extract it again\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=2,\n",
" convert_trait=convert_trait,\n",
" age_row=3,\n",
" convert_age=convert_age,\n",
" gender_row=None,\n",
" convert_gender=None\n",
" )\n",
" print(f\"Clinical features re-extracted\")\n",
" print(f\"Clinical features shape: {clinical_features.shape}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_features.T, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(f\"First few columns: {list(linked_data.columns[:5])}\")\n",
"\n",
"# Check what columns are available in the linked data\n",
"print(f\"Columns in linked_data: {list(linked_data.columns[:5])}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"# Find the correct trait column name (it should be the first column)\n",
"trait_column = linked_data.columns[0]\n",
"print(f\"Using trait column: {trait_column}\")\n",
"\n",
"linked_data_processed = handle_missing_values(linked_data, trait_column)\n",
"print(f\"Shape after handling missing values: {linked_data_processed.shape}\")\n",
"\n",
"# Add validation check - if no samples remain, note the issue\n",
"if linked_data_processed.shape[0] == 0:\n",
" print(\"No samples remain after handling missing values. The dataset cannot be processed further.\")\n",
" is_trait_biased = True # Mark as biased since we can't use it\n",
" unbiased_linked_data = linked_data_processed\n",
"else:\n",
" # 4. Determine whether the trait and demographic features are severely biased\n",
" is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_processed, trait_column)\n",
"\n",
"# 5. Conduct quality check and save the cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True,\n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression data from rectal cancer patients with treatment response data (sensitive/resistant).\"\n",
")\n",
"\n",
"# 6. Save the data if it's usable\n",
"if is_usable:\n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" # Save the data\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(f\"Data quality check failed. The dataset is not suitable for association studies.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|