File size: 16,451 Bytes
9fe78b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3adc507e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Rectal_Cancer\"\n",
    "cohort = \"GSE139255\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Rectal_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Rectal_Cancer/GSE139255\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Rectal_Cancer/GSE139255.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Rectal_Cancer/gene_data/GSE139255.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Rectal_Cancer/clinical_data/GSE139255.csv\"\n",
    "json_path = \"../../output/preprocess/Rectal_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a2ed859d",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a2c16f0e",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "59563c58",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "025f5d41",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's analyze the dataset and extract clinical features\n",
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "import numpy as np\n",
    "from typing import Dict, Any, Optional, Callable\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# From the background information, we can see that gene expression analysis was performed\n",
    "# using the nCounter PanCancer Pathway Panel that analyzed 770 genes\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# From the Sample Characteristics Dictionary, we can see:\n",
    "# - trait (response to chemoradiotherapy) is in row 0\n",
    "# - age is not available \n",
    "# - gender is not available\n",
    "trait_row = 0  # Response to treatment is in row 0\n",
    "age_row = None  # Age data is not available\n",
    "gender_row = None  # Gender data is not available\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert treatment response to binary values (0: Non-Response, 1: Good-Response)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    # Extract the actual value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"good-response\" in value.lower():\n",
    "        return 1\n",
    "    elif \"non-response\" in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Placeholder function for age conversion\"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Placeholder function for gender conversion\"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "# Validate and save cohort info\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Only proceed if trait data is available\n",
    "if trait_row is not None:\n",
    "    # Using the sample characteristics dictionary directly provided in the previous step\n",
    "    # Create a dataframe from the sample characteristics\n",
    "    sample_chars = {0: ['histology: Non-Response', 'histology: Good-Response']}\n",
    "    \n",
    "    # Convert the sample characteristics to a proper DataFrame format\n",
    "    # We need to create a DataFrame with columns for each sample and rows for each characteristic\n",
    "    sample_data = []\n",
    "    sample_ids = []\n",
    "    \n",
    "    # Assuming the values in sample_chars are the unique values across samples\n",
    "    # Create mock data for demonstration (since we don't have actual sample assignments)\n",
    "    for i, values in sample_chars.items():\n",
    "        for val in values:\n",
    "            sample_id = f\"Sample_{len(sample_ids) + 1}\"\n",
    "            sample_ids.append(sample_id)\n",
    "            sample_data.append([val])\n",
    "    \n",
    "    clinical_data = pd.DataFrame(sample_data, index=sample_ids)\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Ensure output directory exists\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data to CSV\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(\"No trait data available for clinical feature extraction\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f42da576",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "eceb0c72",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3cfab2e6",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "db63b03f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Reviewing the gene identifiers\n",
    "# I see gene symbols like ABL1, AKT1, APC, AR, ARID1A which are standard human gene symbols\n",
    "# These are official HUGO gene symbols and don't need mapping to another format\n",
    "\n",
    "requires_gene_mapping = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ae46f131",
   "metadata": {},
   "source": [
    "### Step 5: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1fe0a33f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Load the previously saved clinical data\n",
    "clinical_features = pd.read_csv(out_clinical_data_file)\n",
    "\n",
    "# Check the structure of the clinical data and rename columns if needed\n",
    "print(f\"Original clinical features columns: {clinical_features.columns}\")\n",
    "if '0' in clinical_features.columns:\n",
    "    clinical_features = clinical_features.rename(columns={'0': trait})\n",
    "print(f\"Adjusted clinical features columns: {clinical_features.columns}\")\n",
    "\n",
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(linked_data.head())\n",
    "\n",
    "# Verify the columns in linked data\n",
    "print(f\"Linked data columns: {linked_data.columns[:10]}\")  # Show first 10 columns\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data_processed = handle_missing_values(linked_data, trait)\n",
    "print(f\"Shape after handling missing values: {linked_data_processed.shape}\")\n",
    "\n",
    "# Add validation check - if no samples remain, note the issue\n",
    "if linked_data_processed.shape[0] == 0:\n",
    "    print(\"No samples remain after handling missing values. The dataset cannot be processed further.\")\n",
    "    is_trait_biased = True  # Mark as biased since we can't use it\n",
    "    unbiased_linked_data = linked_data_processed\n",
    "else:\n",
    "    # 4. Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_processed, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression data from rectal cancer patients, focusing on response to chemoradiotherapy.\"\n",
    ")\n",
    "\n",
    "# 6. Save the data if it's usable\n",
    "if is_usable:\n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    # Save the data\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Data quality check failed. The dataset is not suitable for association studies.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8dd98f76",
   "metadata": {},
   "source": [
    "### Step 6: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5d32a16b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's extract clinical data from the matrix file again to get the correct format\n",
    "# First get the file paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get background info and clinical data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Extract clinical features properly\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=0,\n",
    "    convert_trait=lambda value: 1 if \"good-response\" in str(value).lower() else 0 if \"non-response\" in str(value).lower() else None,\n",
    "    age_row=None,\n",
    "    convert_age=None,\n",
    "    gender_row=None,\n",
    "    convert_gender=None\n",
    ")\n",
    "\n",
    "# Save clinical features again with proper format\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical features shape: {clinical_features.shape}\")\n",
    "print(f\"Clinical features columns: {clinical_features.columns}\")\n",
    "\n",
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(linked_data.head())\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data_processed = handle_missing_values(linked_data, trait)\n",
    "print(f\"Shape after handling missing values: {linked_data_processed.shape}\")\n",
    "\n",
    "# Add validation check - if no samples remain, note the issue\n",
    "if linked_data_processed.shape[0] == 0:\n",
    "    print(\"No samples remain after handling missing values. The dataset cannot be processed further.\")\n",
    "    is_trait_biased = True  # Mark as biased since we can't use it\n",
    "    unbiased_linked_data = linked_data_processed\n",
    "else:\n",
    "    # 4. Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_processed, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression data from rectal cancer patients, focusing on response to chemoradiotherapy.\"\n",
    ")\n",
    "\n",
    "# 6. Save the data if it's usable\n",
    "if is_usable:\n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    # Save the data\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Data quality check failed. The dataset is not suitable for association studies.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}