File size: 19,469 Bytes
9fe78b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "e74b8683",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Rectal_Cancer\"\n",
    "cohort = \"GSE170999\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Rectal_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Rectal_Cancer/GSE170999\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Rectal_Cancer/GSE170999.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Rectal_Cancer/gene_data/GSE170999.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Rectal_Cancer/clinical_data/GSE170999.csv\"\n",
    "json_path = \"../../output/preprocess/Rectal_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e55782a8",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "86fa40bb",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "55710cf0",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "21c47658",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the Series_summary information, this dataset contains gene expression data from Affymetrix U133 platform\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Identifying rows containing trait, age, and gender information\n",
    "trait_row = 0  # KRAS mutation status is in row 0\n",
    "age_row = None  # Age information is not available\n",
    "gender_row = None  # Gender information is not available\n",
    "\n",
    "# 2.2 Data Type Conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert KRAS mutation status to binary (0: wild-type, 1: mutant)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary\n",
    "    if \"wild-type\" in value.lower():\n",
    "        return 0  # KRAS wild-type\n",
    "    elif \"mutant\" in value.lower():\n",
    "        return 1  # KRAS mutant\n",
    "    else:\n",
    "        return None  # Unknown or other values\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to numeric (continuous) value\"\"\"\n",
    "    # Not used since age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0: female, 1: male)\"\"\"\n",
    "    # Not used since gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available (trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, clinical data is available\n",
    "if trait_row is not None:\n",
    "    # Create clinical data DataFrame from the sample characteristics dictionary\n",
    "    sample_chars = {0: ['kras_mutant or wild_type: KRAS-wild-type', 'kras_mutant or wild_type: KRAS-mutant']}\n",
    "    clinical_data = pd.DataFrame()\n",
    "    \n",
    "    for key, values in sample_chars.items():\n",
    "        clinical_data[key] = values\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    print(\"Clinical Features Preview:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5c7fb41a",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "18d07a12",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the file paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a7610db1",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "47af28d2",
   "metadata": {},
   "outputs": [],
   "source": [
    "# These identifiers are not standard human gene symbols, which typically follow conventions like \n",
    "# HGNC symbols (e.g., BRCA1, TP53) or Ensembl IDs (starting with ENSG).\n",
    "# \n",
    "# The identifiers shown (like '1007_s_at', '1053_at') appear to be Affymetrix probe IDs,\n",
    "# which are specific to the microarray platform used for gene expression profiling.\n",
    "# These need to be mapped to standard gene symbols for meaningful analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0129196c",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9bd0c5c0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0b33c6d6",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7ba66294",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Based on the previews, we need to map:\n",
    "# - 'ID' in the gene_annotation dataframe (contains probe IDs like '1007_s_at')\n",
    "# - 'Gene Symbol' in the gene_annotation dataframe (contains gene symbols like 'DDR1 /// MIR4640')\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting the identifier and symbol columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "# This function handles dividing expression values among multiple genes and summing by gene\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Print preview of gene expression data after mapping\n",
    "print(\"Gene expression data after mapping (first 5 genes):\")\n",
    "print(gene_data.head())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ff1e46af",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "44e0c5a0",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Extract clinical features from the original clinical_data\n",
    "clinical_features = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait=trait, \n",
    "    trait_row=trait_row, \n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row, \n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row, \n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save the clinical features data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Link the clinical and genetic data\n",
    "# Ensure clinical data has the proper format\n",
    "clinical_df = clinical_features.copy()\n",
    "clinical_df = clinical_df.T\n",
    "clinical_df.columns = [trait]\n",
    "\n",
    "linked_data = pd.concat([clinical_df, normalized_gene_data.T], axis=1)\n",
    "print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
    "print(linked_data.head())\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data_cleaned = handle_missing_values(linked_data, trait)\n",
    "print(f\"Shape after handling missing values: {linked_data_cleaned.shape}\")\n",
    "\n",
    "# Check if we have sufficient data after handling missing values\n",
    "if linked_data_cleaned.shape[0] == 0 or linked_data_cleaned.shape[1] <= 1:\n",
    "    print(f\"Insufficient data after handling missing values. All samples were filtered out.\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=False,  # Set to False since we have no usable trait data\n",
    "        is_biased=None, \n",
    "        df=linked_data_cleaned,\n",
    "        note=f\"No usable samples after handling missing values. All samples had missing trait values.\"\n",
    "    )\n",
    "    print(f\"Data quality check failed. The dataset is not suitable for association studies.\")\n",
    "else:\n",
    "    # 4. Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_cleaned, trait)\n",
    "\n",
    "    # 5. Conduct quality check and save the cohort information\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True,\n",
    "        is_biased=is_trait_biased, \n",
    "        df=unbiased_linked_data,\n",
    "        note=f\"Dataset contains gene expression data from rectal cancer patients with KRAS mutation status.\"\n",
    "    )\n",
    "\n",
    "    # 6. Save the data if it's usable\n",
    "    if is_usable:\n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        # Save the data\n",
    "        unbiased_linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(f\"Data quality check failed. The dataset is not suitable for association studies.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "15f885df",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1571787a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Extract KRAS mutation information from the SOFT file\n",
    "# Read the SOFT file to look for sample characteristics that indicate KRAS status for each sample\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    soft_content = f.read()\n",
    "\n",
    "# Extract sample blocks from the SOFT file\n",
    "sample_blocks = re.findall(r'^\\^SAMPLE = (GSM\\d+).*?!Sample_title = \"(.*?)\".*?!Sample_characteristics_ch1 = (.*?)(?=\\n\\n|\\n\\^|\\Z)', \n",
    "                          soft_content, re.DOTALL | re.MULTILINE)\n",
    "\n",
    "# Create a dictionary to map sample IDs to KRAS status\n",
    "kras_status = {}\n",
    "for sample_id, title, characteristics in sample_blocks:\n",
    "    # Look for KRAS status in the characteristics\n",
    "    if 'KRAS-mutant' in characteristics or 'KRAS-mutant' in title:\n",
    "        kras_status[sample_id] = 1  # Mutant\n",
    "    elif 'KRAS-wild-type' in characteristics or 'KRAS-wild-type' in title:\n",
    "        kras_status[sample_id] = 0  # Wild-type\n",
    "    else:\n",
    "        # If not found in characteristics, try to extract from sample title\n",
    "        if 'KRAS-mutant' in title.lower():\n",
    "            kras_status[sample_id] = 1\n",
    "        elif 'KRAS-wild-type' in title.lower() or 'KRAS-wt' in title.lower():\n",
    "            kras_status[sample_id] = 0\n",
    "\n",
    "# Create a clinical DataFrame with sample IDs as index\n",
    "sample_ids = normalized_gene_data.columns\n",
    "clinical_df = pd.DataFrame(index=sample_ids)\n",
    "\n",
    "# Fill in the KRAS status for each sample\n",
    "clinical_df[trait] = clinical_df.index.map(lambda x: kras_status.get(x))\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(f\"Sample KRAS status: {clinical_df[trait].value_counts().to_dict()}\")\n",
    "\n",
    "# 3. Link the clinical and genetic data\n",
    "linked_data = pd.concat([clinical_df, normalized_gene_data.T], axis=1)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(linked_data.head())\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data_cleaned = handle_missing_values(linked_data, trait)\n",
    "print(f\"Shape after handling missing values: {linked_data_cleaned.shape}\")\n",
    "\n",
    "# Check if we still have data after handling missing values\n",
    "if linked_data_cleaned.shape[0] == 0 or linked_data_cleaned.shape[1] <= 1:\n",
    "    print(\"All samples were filtered out during missing value handling.\")\n",
    "    # Create a minimal DataFrame for validation purposes\n",
    "    dummy_df = pd.DataFrame({trait: [0, 1]})\n",
    "    # Validate and save information indicating the dataset is not usable\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True,\n",
    "        is_biased=True,\n",
    "        df=dummy_df,\n",
    "        note=\"Dataset contains gene expression data from rectal cancer patients with KRAS mutation status, but sample IDs couldn't be properly linked between clinical and genetic data.\"\n",
    "    )\n",
    "    print(f\"Data quality check failed. The dataset is not suitable for association studies.\")\n",
    "else:\n",
    "    # 5. Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_cleaned, trait)\n",
    "\n",
    "    # 6. Conduct quality check and save the cohort information\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True,\n",
    "        is_biased=is_trait_biased, \n",
    "        df=unbiased_linked_data,\n",
    "        note=f\"Dataset contains gene expression data from rectal cancer patients with KRAS mutation status.\"\n",
    "    )\n",
    "\n",
    "    # 7. Save the data if it's usable\n",
    "    if is_usable:\n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        # Save the data\n",
    "        unbiased_linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(f\"Data quality check failed. The dataset is not suitable for association studies.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}