File size: 20,135 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "96c4b692",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:42.006042Z",
     "iopub.status.busy": "2025-03-25T03:50:42.005857Z",
     "iopub.status.idle": "2025-03-25T03:50:42.171708Z",
     "shell.execute_reply": "2025-03-25T03:50:42.171360Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Rheumatoid_Arthritis\"\n",
    "cohort = \"GSE121894\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Rheumatoid_Arthritis\"\n",
    "in_cohort_dir = \"../../input/GEO/Rheumatoid_Arthritis/GSE121894\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/GSE121894.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE121894.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE121894.csv\"\n",
    "json_path = \"../../output/preprocess/Rheumatoid_Arthritis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ccca13c1",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0beade0d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:42.173126Z",
     "iopub.status.busy": "2025-03-25T03:50:42.172977Z",
     "iopub.status.idle": "2025-03-25T03:50:42.304209Z",
     "shell.execute_reply": "2025-03-25T03:50:42.303860Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression profile of endothelial cells derived from circulating progenitors issued from patients with rheumatoid arthritis\"\n",
      "!Series_summary\t\"Synovial neoangiogenesis is an early and crucial event to promote the development of the hyperplasic proliferative pathologic synovium in rheumatoid arthritis (RA). Endothelial cells (ECs) are critical for the formation of new blood vessels since they highly contribute to angiogenesis and vasculogenesis.\"\n",
      "!Series_summary\t\"To better characterize these cells, our group has studied the gene expression profiles of ECs issued from 18 RA patients compared to 11 healthy controls.\"\n",
      "!Series_overall_design\t\"ECs derived from circulating endothelial progenitor cells (EPCs) were isolated from peripheral blood of RA patients and controls for RNA extraction and hybridization on Affymetrix microarrays. Gene expression profiles of EPC-derived ECs were determined in basal conditions and also after hypoxic exposure.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['subject status: Rheumatoid arthritis', 'subject status: Healthy control'], 1: ['tissue: peripheral blood'], 2: ['cell type: Endothelial cells (EC) derived from circulating endothelial progenitor cells (EPCs)'], 3: ['treatment: hypoxic exposure', 'treatment: unstimulated']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9920c1e5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "00a22569",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:42.305367Z",
     "iopub.status.busy": "2025-03-25T03:50:42.305260Z",
     "iopub.status.idle": "2025-03-25T03:50:42.310108Z",
     "shell.execute_reply": "2025-03-25T03:50:42.309815Z"
    }
   },
   "outputs": [],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "from typing import Optional, Callable, Any, Dict\n",
    "import json\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series title and summary, this appears to be gene expression data from microarrays\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "trait_row = 0  # 'subject status' indicates RA vs healthy control\n",
    "age_row = None  # Age information is not available in the sample characteristics\n",
    "gender_row = None  # Gender information is not available in the sample characteristics\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value: str) -> int:\n",
    "    \"\"\"Convert trait value to binary (0 for control, 1 for RA)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if 'rheumatoid arthritis' in value.lower():\n",
    "        return 1  # RA patient\n",
    "    elif 'healthy control' in value.lower():\n",
    "        return 0  # Healthy control\n",
    "    else:\n",
    "        return None  # Unknown\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age value to continuous\"\"\"\n",
    "    # Not used as age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
    "    # Not used as gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering and save relevant information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Check if trait_row is not None, which means clinical data is available\n",
    "if trait_row is not None:\n",
    "    # Assuming clinical_data is a DataFrame from a previous step\n",
    "    # Let's load the clinical data\n",
    "    files = os.listdir(in_cohort_dir)\n",
    "    clinical_file = None\n",
    "    for file in files:\n",
    "        if \"characteristics\" in file.lower():\n",
    "            clinical_file = os.path.join(in_cohort_dir, file)\n",
    "            break\n",
    "    \n",
    "    if clinical_file:\n",
    "        clinical_data = pd.read_csv(clinical_file, sep='\\t', header=0)\n",
    "        \n",
    "        # Extract clinical features\n",
    "        selected_clinical_df = geo_select_clinical_features(\n",
    "            clinical_df=clinical_data,\n",
    "            trait=trait,\n",
    "            trait_row=trait_row,\n",
    "            convert_trait=convert_trait,\n",
    "            age_row=age_row,\n",
    "            convert_age=convert_age,\n",
    "            gender_row=gender_row,\n",
    "            convert_gender=convert_gender\n",
    "        )\n",
    "        \n",
    "        # Preview the data\n",
    "        preview = preview_df(selected_clinical_df)\n",
    "        print(f\"Clinical data preview: {preview}\")\n",
    "        \n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save the data\n",
    "        selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "        print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8a09d458",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "2b1e5aca",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:42.311129Z",
     "iopub.status.busy": "2025-03-25T03:50:42.311027Z",
     "iopub.status.idle": "2025-03-25T03:50:42.527684Z",
     "shell.execute_reply": "2025-03-25T03:50:42.527314Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Index(['100009613_at', '100009676_at', '10000_at', '10001_at', '10002_at',\n",
      "       '100033423_at', '100033424_at', '100033425_at', '100033426_at',\n",
      "       '100033436_at', '100033444_at', '100033453_at', '100033806_at',\n",
      "       '100033820_at', '100037417_at', '100038246_at', '10003_at',\n",
      "       '100048912_at', '100049587_at', '100049716_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6b171eee",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "338c8531",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:42.528958Z",
     "iopub.status.busy": "2025-03-25T03:50:42.528851Z",
     "iopub.status.idle": "2025-03-25T03:50:42.530666Z",
     "shell.execute_reply": "2025-03-25T03:50:42.530397Z"
    }
   },
   "outputs": [],
   "source": [
    "# Based on my biomedical knowledge, these are not standard human gene symbols\n",
    "# The \"_at\" suffix suggests these are likely probe IDs from a microarray platform (e.g., Affymetrix)\n",
    "# Human gene symbols would typically be in formats like \"BRCA1\", \"TP53\", etc.\n",
    "# These identifiers will need to be mapped to standard gene symbols for analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "24ac43f9",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "f3390c48",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:42.531831Z",
     "iopub.status.busy": "2025-03-25T03:50:42.531732Z",
     "iopub.status.idle": "2025-03-25T03:50:44.206805Z",
     "shell.execute_reply": "2025-03-25T03:50:44.206220Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1_at', '10_at', '100_at', '1000_at', '10000_at'], 'ENTREZ_GENE_ID': ['1', '10', '100', '1000', '10000'], 'Description': ['alpha-1-B glycoprotein', 'N-acetyltransferase 2 (arylamine N-acetyltransferase)', 'adenosine deaminase', 'cadherin 2, type 1, N-cadherin (neuronal)', 'v-akt murine thymoma viral oncogene homolog 3'], 'SPOT_ID': [1.0, 10.0, 100.0, 1000.0, 10000.0]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8913cd91",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "1b40836d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:44.208689Z",
     "iopub.status.busy": "2025-03-25T03:50:44.208562Z",
     "iopub.status.idle": "2025-03-25T03:50:44.410214Z",
     "shell.execute_reply": "2025-03-25T03:50:44.409525Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation column names: ['ID', 'ENTREZ_GENE_ID', 'Description', 'SPOT_ID']\n",
      "\n",
      "First 5 rows of gene annotation data:\n",
      "         ID ENTREZ_GENE_ID                                        Description  \\\n",
      "0      1_at              1                             alpha-1-B glycoprotein   \n",
      "1     10_at             10  N-acetyltransferase 2 (arylamine N-acetyltrans...   \n",
      "2    100_at            100                                adenosine deaminase   \n",
      "3   1000_at           1000          cadherin 2, type 1, N-cadherin (neuronal)   \n",
      "4  10000_at          10000      v-akt murine thymoma viral oncogene homolog 3   \n",
      "\n",
      "   SPOT_ID  \n",
      "0      1.0  \n",
      "1     10.0  \n",
      "2    100.0  \n",
      "3   1000.0  \n",
      "4  10000.0  \n",
      "\n",
      "After normalization - First 10 gene symbols:\n",
      "Index(['A1BG', 'A2M', 'A4GALT', 'AAA1', 'AAR2', 'AATK', 'ABCC11', 'ABCC5',\n",
      "       'ABCD1', 'ABCE1'],\n",
      "      dtype='object', name='Gene')\n",
      "\n",
      "Total number of genes after mapping: 1884\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's see more of the gene annotation data to better understand the available columns\n",
    "print(\"Gene annotation column names:\", gene_annotation.columns.tolist())\n",
    "print(\"\\nFirst 5 rows of gene annotation data:\")\n",
    "print(gene_annotation.head(5))\n",
    "\n",
    "# 2. Looking at this microarray data format (Affymetrix), the ENTREZ_GENE_ID is likely \n",
    "# the most reliable mapping to official gene symbols. Let's use it for mapping.\n",
    "# However, we need a way to convert Entrez IDs to gene symbols.\n",
    "\n",
    "# Since the function apply_gene_mapping will attempt to extract human gene symbols from text,\n",
    "# we need a column that contains gene symbols or names from which symbols can be extracted.\n",
    "# The Description column is our best option in this case.\n",
    "\n",
    "# Extract the mapping columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'Description')\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Normalize the gene symbols to ensure consistency\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "\n",
    "# Preview the mapped gene data\n",
    "print(\"\\nAfter normalization - First 10 gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "print(\"\\nTotal number of genes after mapping:\", len(gene_data))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4e85b63b",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "795613cc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:50:44.411957Z",
     "iopub.status.busy": "2025-03-25T03:50:44.411832Z",
     "iopub.status.idle": "2025-03-25T03:50:44.964314Z",
     "shell.execute_reply": "2025-03-25T03:50:44.963676Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data saved to ../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE121894.csv\n",
      "Linked data shape before handling missing values: (58, 1885)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (58, 1885)\n",
      "For the feature 'Rheumatoid_Arthritis', the least common label is '0.0' with 22 occurrences. This represents 37.93% of the dataset.\n",
      "The distribution of the feature 'Rheumatoid_Arthritis' in this dataset is fine.\n",
      "\n",
      "A new JSON file was created at: ../../output/preprocess/Rheumatoid_Arthritis/cohort_info.json\n",
      "Data is usable. Saving to ../../output/preprocess/Rheumatoid_Arthritis/GSE121894.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "# Note: We already normalized the gene data in the previous step\n",
    "normalized_gene_data = gene_data.copy()\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Re-extract clinical features since we need it for linking\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 3. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression from endothelial cells derived from circulating progenitors of RA patients\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    print(f\"Data is usable. Saving to {out_data_file}\")\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "else:\n",
    "    print(\"Data is not usable. Not saving linked data file.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}