File size: 37,849 Bytes
82732bd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "9963c90d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:37.067266Z",
"iopub.status.busy": "2025-03-25T03:51:37.067161Z",
"iopub.status.idle": "2025-03-25T03:51:37.258251Z",
"shell.execute_reply": "2025-03-25T03:51:37.257806Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Rheumatoid_Arthritis\"\n",
"cohort = \"GSE224842\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Rheumatoid_Arthritis\"\n",
"in_cohort_dir = \"../../input/GEO/Rheumatoid_Arthritis/GSE224842\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/GSE224842.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv\"\n",
"json_path = \"../../output/preprocess/Rheumatoid_Arthritis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "3fba5089",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f7f7d0ab",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:37.259891Z",
"iopub.status.busy": "2025-03-25T03:51:37.259706Z",
"iopub.status.idle": "2025-03-25T03:51:37.365669Z",
"shell.execute_reply": "2025-03-25T03:51:37.365369Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gene expression profiles of peripheral blood mononuclear cells before abatacept treatment in rheumatoid arthritis patients.\"\n",
"!Series_summary\t\"To explore markers which predict the efficacy of abatacept in rheumatoid arthritis, peripheral blood mononuclear cells were obtained before abatacept treatment.\"\n",
"!Series_overall_design\t\"30 rheumatoid arthritis patients receiving abatacept were participated in the study. Blood samples were obtained before the initiation of abatacept treatment. Density-gradient separeted peripheral blood mononuclear cells were subjected the DNA microarray analyses.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease state: rheumatoid arthritis'], 1: ['cell type: PBMC']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "c2128886",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1fc72b76",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:37.366956Z",
"iopub.status.busy": "2025-03-25T03:51:37.366853Z",
"iopub.status.idle": "2025-03-25T03:51:37.373632Z",
"shell.execute_reply": "2025-03-25T03:51:37.373344Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of clinical features:\n",
"{'GSM7034090': [1.0], 'GSM7034091': [1.0], 'GSM7034092': [1.0], 'GSM7034093': [1.0], 'GSM7034094': [1.0], 'GSM7034095': [1.0], 'GSM7034096': [1.0], 'GSM7034097': [1.0], 'GSM7034098': [1.0], 'GSM7034099': [1.0], 'GSM7034100': [1.0], 'GSM7034101': [1.0], 'GSM7034102': [1.0], 'GSM7034103': [1.0], 'GSM7034104': [1.0], 'GSM7034105': [1.0], 'GSM7034106': [1.0], 'GSM7034107': [1.0], 'GSM7034108': [1.0], 'GSM7034109': [1.0], 'GSM7034110': [1.0], 'GSM7034111': [1.0], 'GSM7034112': [1.0], 'GSM7034113': [1.0], 'GSM7034114': [1.0], 'GSM7034115': [1.0], 'GSM7034116': [1.0], 'GSM7034117': [1.0], 'GSM7034118': [1.0], 'GSM7034119': [1.0]}\n",
"Clinical features saved to ../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains gene expression profiles of PBMCs\n",
"# The title mentions \"Gene expression profiles\" and the overall design mentions \"DNA microarray analyses\"\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Looking at the sample characteristics dictionary\n",
"# For trait: All samples have \"rheumatoid arthritis\" (row 0)\n",
"trait_row = 0\n",
"\n",
"# For age: Not explicitly mentioned in the sample characteristics\n",
"age_row = None\n",
"\n",
"# For gender: Not explicitly mentioned in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"# For trait: Convert to binary (1 for RA, 0 for control)\n",
"# But all samples in this dataset have RA (no controls), so it'll be constant\n",
"def convert_trait(value):\n",
" if not value or not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip().lower()\n",
" else:\n",
" value = value.strip().lower()\n",
" \n",
" if 'rheumatoid arthritis' in value or 'ra' in value:\n",
" return 1\n",
" elif 'control' in value or 'healthy' in value or 'normal' in value:\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# Since age_row and gender_row are None, we don't need conversion functions for them\n",
"convert_age = None\n",
"convert_gender = None\n",
"\n",
"# 3. Save Metadata\n",
"# Perform initial filtering on data usability\n",
"# trait_row is not None, so trait data is available\n",
"is_trait_available = trait_row is not None\n",
"initial_check = validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# trait_row is not None, so clinical data is available\n",
"if trait_row is not None:\n",
" try:\n",
" # Load clinical data (assumed to be defined in a previous step)\n",
" # Extract clinical features\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data, # This should be defined in a previous step\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview extracted clinical features\n",
" preview = preview_df(clinical_features)\n",
" print(\"Preview of clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical features to a CSV file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
" except NameError:\n",
" print(\"Clinical data not available from previous steps.\")\n"
]
},
{
"cell_type": "markdown",
"id": "36869e4b",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "32899081",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:37.374888Z",
"iopub.status.busy": "2025-03-25T03:51:37.374790Z",
"iopub.status.idle": "2025-03-25T03:51:37.524159Z",
"shell.execute_reply": "2025-03-25T03:51:37.523831Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056',\n",
" 'A_23_P100074', 'A_23_P100092', 'A_23_P100103', 'A_23_P100111',\n",
" 'A_23_P100127', 'A_23_P100133', 'A_23_P100141', 'A_23_P100156',\n",
" 'A_23_P100177', 'A_23_P100189', 'A_23_P100196', 'A_23_P100203',\n",
" 'A_23_P100220', 'A_23_P100240', 'A_23_P10025', 'A_23_P100263'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "63270660",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2b399577",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:37.525198Z",
"iopub.status.busy": "2025-03-25T03:51:37.525089Z",
"iopub.status.idle": "2025-03-25T03:51:37.526943Z",
"shell.execute_reply": "2025-03-25T03:51:37.526664Z"
}
},
"outputs": [],
"source": [
"# Looking at the gene identifiers, these appear to be Agilent microarray probe IDs\n",
"# (format \"A_23_P######\") rather than human gene symbols.\n",
"# These identifiers need to be mapped to gene symbols for biological interpretation.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "6df4d81c",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "eb48cb99",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:37.527888Z",
"iopub.status.busy": "2025-03-25T03:51:37.527787Z",
"iopub.status.idle": "2025-03-25T03:51:39.815946Z",
"shell.execute_reply": "2025-03-25T03:51:39.815515Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'SPOT_ID': ['A_23_P100001', 'A_23_P100011', 'A_23_P100022', 'A_23_P100056', 'A_23_P100074'], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'REFSEQ': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GB_ACC': ['NM_207446', 'NM_005829', 'NM_014848', 'NM_194272', 'NM_020371'], 'GENE': [400451.0, 10239.0, 9899.0, 348093.0, 57099.0], 'GENE_SYMBOL': ['FAM174B', 'AP3S2', 'SV2B', 'RBPMS2', 'AVEN'], 'GENE_NAME': ['family with sequence similarity 174, member B', 'adaptor-related protein complex 3, sigma 2 subunit', 'synaptic vesicle glycoprotein 2B', 'RNA binding protein with multiple splicing 2', 'apoptosis, caspase activation inhibitor'], 'UNIGENE_ID': ['Hs.27373', 'Hs.632161', 'Hs.21754', 'Hs.436518', 'Hs.555966'], 'ENSEMBL_ID': ['ENST00000557398', nan, 'ENST00000557410', 'ENST00000300069', 'ENST00000306730'], 'TIGR_ID': [nan, nan, nan, nan, nan], 'ACCESSION_STRING': ['ref|NM_207446|ens|ENST00000557398|ens|ENST00000553393|ens|ENST00000327355', 'ref|NM_005829|ref|NM_001199058|ref|NR_023361|ref|NR_037582', 'ref|NM_014848|ref|NM_001167580|ens|ENST00000557410|ens|ENST00000330276', 'ref|NM_194272|ens|ENST00000300069|gb|AK127873|gb|AK124123', 'ref|NM_020371|ens|ENST00000306730|gb|AF283508|gb|BC010488'], 'CHROMOSOMAL_LOCATION': ['chr15:93160848-93160789', 'chr15:90378743-90378684', 'chr15:91838329-91838388', 'chr15:65032375-65032316', 'chr15:34158739-34158680'], 'CYTOBAND': ['hs|15q26.1', 'hs|15q26.1', 'hs|15q26.1', 'hs|15q22.31', 'hs|15q14'], 'DESCRIPTION': ['Homo sapiens family with sequence similarity 174, member B (FAM174B), mRNA [NM_207446]', 'Homo sapiens adaptor-related protein complex 3, sigma 2 subunit (AP3S2), transcript variant 1, mRNA [NM_005829]', 'Homo sapiens synaptic vesicle glycoprotein 2B (SV2B), transcript variant 1, mRNA [NM_014848]', 'Homo sapiens RNA binding protein with multiple splicing 2 (RBPMS2), mRNA [NM_194272]', 'Homo sapiens apoptosis, caspase activation inhibitor (AVEN), mRNA [NM_020371]'], 'GO_ID': ['GO:0016020(membrane)|GO:0016021(integral to membrane)', 'GO:0005794(Golgi apparatus)|GO:0006886(intracellular protein transport)|GO:0008565(protein transporter activity)|GO:0016020(membrane)|GO:0016192(vesicle-mediated transport)|GO:0030117(membrane coat)|GO:0030659(cytoplasmic vesicle membrane)|GO:0031410(cytoplasmic vesicle)', 'GO:0001669(acrosomal vesicle)|GO:0006836(neurotransmitter transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0022857(transmembrane transporter activity)|GO:0030054(cell junction)|GO:0030672(synaptic vesicle membrane)|GO:0031410(cytoplasmic vesicle)|GO:0045202(synapse)', 'GO:0000166(nucleotide binding)|GO:0003676(nucleic acid binding)', 'GO:0005515(protein binding)|GO:0005622(intracellular)|GO:0005624(membrane fraction)|GO:0006915(apoptosis)|GO:0006916(anti-apoptosis)|GO:0012505(endomembrane system)|GO:0016020(membrane)'], 'SEQUENCE': ['ATCTCATGGAAAAGCTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCA', 'TCAAGTATTGGCCTGACATAGAGTCCTTAAGACAAGCAAAGACAAGCAAGGCAAGCACGT', 'ATGTCGGCTGTGGAGGGTTAAAGGGATGAGGCTTTCCTTTGTTTAGCAAATCTGTTCACA', 'CCCTGTCAGATAAGTTTAATGTTTAGTTTGAGGCATGAAGAAGAAAAGGGTTTCCATTCT', 'GACCAGCCAGTTTACAAGCATGTCTCAAGCTAGTGTGTTCCATTATGCTCACAGCAGTAA']}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "775ca674",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "21184f03",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:39.817420Z",
"iopub.status.busy": "2025-03-25T03:51:39.817297Z",
"iopub.status.idle": "2025-03-25T03:51:39.949445Z",
"shell.execute_reply": "2025-03-25T03:51:39.949114Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of genes after mapping: 18488\n",
"First 10 gene symbols:\n",
"Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT',\n",
" 'AAAS', 'AACS'],\n",
" dtype='object', name='Gene')\n"
]
}
],
"source": [
"# 1. Determine which columns in gene_annotation contain probe IDs and gene symbols\n",
"# From the preview output, we can see:\n",
"# - 'ID' column contains identifiers like A_23_P100001 (matching gene_data index)\n",
"# - 'GENE_SYMBOL' column contains human gene symbols like FAM174B, AP3S2, etc.\n",
"\n",
"# 2. Get a gene mapping dataframe with the ID and gene symbol columns\n",
"mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"# This handles many-to-many mapping by distributing expression values appropriately\n",
"gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
"\n",
"# Print the number of genes and preview first few gene symbols\n",
"print(f\"Number of genes after mapping: {gene_data.shape[0]}\")\n",
"print(\"First 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n"
]
},
{
"cell_type": "markdown",
"id": "35471ee7",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "0ba8b487",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:51:39.950825Z",
"iopub.status.busy": "2025-03-25T03:51:39.950714Z",
"iopub.status.idle": "2025-03-25T03:51:46.040703Z",
"shell.execute_reply": "2025-03-25T03:51:46.040167Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data preview:\n",
"{'GSM7034090': [1.0], 'GSM7034091': [1.0], 'GSM7034092': [1.0], 'GSM7034093': [1.0], 'GSM7034094': [1.0], 'GSM7034095': [1.0], 'GSM7034096': [1.0], 'GSM7034097': [1.0], 'GSM7034098': [1.0], 'GSM7034099': [1.0], 'GSM7034100': [1.0], 'GSM7034101': [1.0], 'GSM7034102': [1.0], 'GSM7034103': [1.0], 'GSM7034104': [1.0], 'GSM7034105': [1.0], 'GSM7034106': [1.0], 'GSM7034107': [1.0], 'GSM7034108': [1.0], 'GSM7034109': [1.0], 'GSM7034110': [1.0], 'GSM7034111': [1.0], 'GSM7034112': [1.0], 'GSM7034113': [1.0], 'GSM7034114': [1.0], 'GSM7034115': [1.0], 'GSM7034116': [1.0], 'GSM7034117': [1.0], 'GSM7034118': [1.0], 'GSM7034119': [1.0]}\n",
"Clinical data saved to ../../output/preprocess/Rheumatoid_Arthritis/clinical_data/GSE224842.csv\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Rheumatoid_Arthritis/gene_data/GSE224842.csv\n",
"Linked data shape: (30, 18489)\n",
"Linked data preview:\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'Rheumatoid_Arthritis': [1.0, 1.0, 1.0, 1.0, 1.0], 'A1BG': [-5.672276699999999, -5.7897815999999995, -6.910050399999999, -7.37900833, -6.85140124], 'A1BG-AS1': [-0.82573605, -0.5873003, -1.2211533, -1.1551151, -0.93727255], 'A1CF': [-13.8762918, -12.7947989, -13.7370762, -13.416313200000001, -10.8981619], 'A2LD1': [-0.41900063, 1.0252638, -0.21993828, -0.5222225, -0.8553972], 'A2M': [-4.400196, -4.0229826, -4.515613, -3.1656747, -4.5899105], 'A2ML1': [-0.48994827, -0.4254818, -1.1093178, -1.1353436, -1.2472539], 'A4GALT': [-7.4506717, -7.31589, -5.7703366, -6.598217, -5.0818677], 'A4GNT': [-7.218234, -7.0256987, -7.2700396, -6.986816, -7.2179604], 'AAAS': [-0.7432537, -0.5085478, -1.1884365, -0.9100504, -0.6118984], 'AACS': [-1.0635576, -0.34570217, -0.81950283, -0.2558813, -0.58977795], 'AADAC': [-7.545908, -7.38232, -7.52981, -7.2697544, -7.6395655], 'AADACL2': [-7.503484, -7.356191, -5.2046757, -7.269441, -7.6019454], 'AADAT': [-7.527377, -7.371703, -7.4991765, -4.376906, -6.504797], 'AAGAB': [2.2582073, 2.548541, 2.1341095, 2.5100403, 2.169055], 'AAK1': [-10.1140018, -10.66734, -8.8441229, -9.5454646, -11.114736], 'AAMP': [1.0216742, 1.7772751, 1.4360008, 1.7343493, 2.1862898], 'AANAT': [-2.407835, -2.600957, -3.1172256, -3.2139435, -2.1840324], 'AARS': [-1.3784218, -0.96384525, -1.1997204, 0.41259098, -0.87807274], 'AARS2': [1.2421246, 0.7138815, 0.71047974, 0.61293507, 0.6756878], 'AARSD1': [-6.34245004, -4.5921581300000005, -5.38046676, -4.74188747, -6.92157907], 'AASDH': [-8.96104619, -9.192639254, -8.82581376, -9.39817388, -9.8033094], 'AASDHPPT': [2.96489045, 2.4781103030000002, 2.0863609600000004, 2.82212354, 0.722592354], 'AASS': [-4.0427446, -5.587759, -3.4349966, -5.0994215, -4.392365], 'AATF': [4.5565377, 4.2980756, 3.6240091999999997, 4.5149498, 4.7296314], 'AATK': [-9.334624000000002, -6.873260070000001, -8.384986099999999, -8.87256865, -0.9261999999999999], 'ABAT': [-3.24603217, -2.80136063, -4.10673325, -2.59025958, -2.0031033000000003], 'ABCA1': [-12.757077800000001, -15.3560429, -12.903388, -13.3188338, -9.8142328], 'ABCA10': [-4.9155107, -5.8032866, -4.626173, -5.405068, -5.4405556], 'ABCA11P': [-2.422851, -3.131978, -2.0128284, -2.0210571, -4.3289123], 'ABCA12': [-7.486428, -7.318147, -7.531383, -6.988555, -2.822732], 'ABCA13': [-5.3295507, -7.3612285, -3.1822505, -5.0947323, -7.604577], 'ABCA2': [-1.8076773, -1.2912087, -1.6370692, -1.9587884, -1.7081199], 'ABCA3': [-1.4380689, -1.2448292, -1.3428173, -1.9600391, -1.5856733], 'ABCA4': [-6.471012, -7.217036, -6.6104593, -6.978163, -7.485575], 'ABCA5': [0.6779327599999999, 0.11842156000000004, 0.5958519, -1.2487487800000001, -0.4253073], 'ABCA6': [-9.472969599999999, -11.8636318, -11.823563, -10.8864856, -10.546861700000001], 'ABCA7': [1.9915819, 1.6059198, 1.7085752, 1.7209673, 2.1078033], 'ABCA8': [-7.4203796, -7.2688956, -7.521812, -7.227166, -7.5249386], 'ABCA9': [-14.653060799999999, -12.769157700000001, -14.9767066, -14.3128815, -14.4369796], 'ABCB1': [-2.0282202, -2.4826593, -1.0026102, -3.126443, -2.0018563], 'ABCB10': [-8.624274230000001, -8.578881599999999, -7.84577654, -7.9238329499999995, -12.04703233], 'ABCB11': [-7.1828556, -7.0696793, -6.7747784, -7.0420246, -7.2673364], 'ABCB4': [-7.164705, -7.348943, -5.5546684, -7.239685, -6.467076], 'ABCB5': [-7.2002506, -7.0846815, -4.0676703, -6.8182974, -6.5319233], 'ABCB6': [-2.67638685, -2.3826008, -3.685645, -0.09470175999999997, -2.9620061], 'ABCB7': [1.3340616, 1.4737597, 1.0411892, 1.0278149, 0.88613796], 'ABCB8': [-4.140383, -3.5827246, -4.197866, -3.7845197, -3.9600024], 'ABCB9': [-13.7507846, -9.289794, -12.280249099999999, -6.978387, -11.3399894], 'ABCC1': [-1.8489552, -2.0801287, -1.8150349, -1.6443453, -1.7558122], 'ABCC10': [-0.8678589, -0.34912872, -0.64244556, -0.18570137, -0.07838249], 'ABCC11': [-7.3919, -7.274523, -7.5247974, -7.236232, -7.5175114], 'ABCC12': [-7.177505, -7.0590277, -7.3686857, -7.0309725, -7.2513103], 'ABCC13': [-21.2657442, -21.1505015, -21.4832578, -14.935285499999999, -22.6532829], 'ABCC2': [-6.5338074, -6.9857444, -5.733757499999999, -6.5686412, -5.5115806], 'ABCC3': [-0.5467434, -0.33122063, -0.5763979, -0.44857216, -1.3619113], 'ABCC4': [-20.212616699999998, -18.6689857, -15.8695898, -16.5618327, -20.1354993], 'ABCC5': [-2.6609211999999998, -3.7586982000000004, -2.3223719, -3.3235003999999995, -1.8228191], 'ABCC6': [-7.9646101, -9.4157849, -8.8081841, -13.3019816, -7.717088400000001], 'ABCC8': [-5.1685414, -5.8076735, -5.9039516, -7.0703325, -6.0444765], 'ABCC9': [-21.764257, -21.394194, -21.630094, -20.8896146, -22.1087536], 'ABCD1': [-1.8755527, -1.8623714, -2.5637264, -2.343752, -1.6781306], 'ABCD2': [-3.4833298, -4.6907625, -4.2587023, -4.2959223, -5.8055077], 'ABCD3': [-5.7499561, -5.670706300000001, -4.3278193, -5.4211168, -5.0843983], 'ABCD4': [0.81443214, 0.61604214, 0.84440994, 0.45913792, 0.6721153], 'ABCE1': [-2.9135966, -2.91890238, -2.9767418300000004, -2.66954706, -3.5395136], 'ABCF1': [1.8778639, 1.9378271, 1.5987844, 2.3812885, 2.2160187], 'ABCF2': [-2.62760008, -2.638169813, -2.510194734, -1.16964, -1.66941155], 'ABCF3': [1.3612194, 1.2426577, 1.0398817, 1.1960793, 1.3382578], 'ABCG1': [-0.99579906, -1.9206533, -1.3551111, -1.9619017, -1.0773997], 'ABCG2': [-3.2962637, -4.401633, -4.4412265, -3.2782435, -3.7415028], 'ABCG4': [-7.5338736, -7.376561, -7.5302525, -7.2711535, -7.6219125], 'ABCG5': [-6.657258, -7.250321, -7.403962, -7.2010193, -7.4992304], 'ABCG8': [-7.2271833, -7.124341, -7.467396, -7.0909815, -7.3497014], 'ABHD1': [-6.762836999999999, -8.5736408, -9.8026127, -10.290669900000001, -8.9762783], 'ABHD10': [-8.799778400000001, -8.775035800000001, -9.401433919999999, -9.140755720000001, -9.49976203], 'ABHD11': [-2.4761997, -1.6473356000000001, -3.6900701600000003, -0.8848332600000001, -1.4365778], 'ABHD12': [-3.0476747499999997, -3.2087121, -2.9060482600000004, -2.3387251, -2.61919447], 'ABHD12B': [-7.267728, -7.15442, -7.491486, -7.1545515, -7.3993483], 'ABHD13': [-8.2465113, -8.2902551, -7.6255898, -9.5016803, -7.83000665], 'ABHD14A': [-0.18257809, 0.023521423, -0.37325954, -0.05340004, -0.443964], 'ABHD14B': [-2.70071652, -2.7552423499999996, -2.886884247, -2.50080918, -2.0672236], 'ABHD15': [0.15834427, -0.64338684, -0.50092983, -1.2246332, -1.2972102], 'ABHD16A': [-0.6656771, -0.397007, -0.92480373, -0.96979046, -0.22925949], 'ABHD16B': [-3.7478871, -3.364874, -2.8352184, -2.8809175, -3.4663444], 'ABHD2': [-16.2790142, -15.82895994, -10.5943938, -12.13850693, -11.67165071], 'ABHD3': [0.13170528, -0.2957859, 0.1852827, -0.12103939, 0.27666855], 'ABHD4': [-0.7260065, -1.0659947, -1.3100948, -0.86526203, -0.48190308], 'ABHD5': [0.44874, 0.6871443, 0.34294033, 0.21835995, 1.5371256], 'ABHD6': [0.44564724, 0.48078156, -0.118780136, -0.18615627, -0.5337801], 'ABHD8': [-2.0172424, -1.4165812, -2.2404466, -2.109457, -1.8998551], 'ABI1': [2.0388355999999996, 2.1790695, 1.6608687, 1.5719729, 2.0651226200000004], 'ABI2': [-3.8268227, -3.9822534999999997, -3.1611133000000002, -3.0800023, -3.3106175], 'ABI3': [2.046051, 2.768569, 1.9696617, 2.6781359, 1.8798723], 'ABI3BP': [-12.584055, -14.3518403, -14.8202193, -12.7740476, -14.8524752], 'ABL1': [-18.05591475, -18.36841663, -16.075487380000002, -17.16053067, -16.80604232], 'ABL2': [-9.151920800000001, -10.674274, -9.60929394, -11.8544745, -8.7107896], 'ABLIM1': [4.5914726, 4.1526575, 4.179431, 3.8035822, 4.6776524], 'ABLIM2': [-2.7442427, -3.0166035, -2.927566, -3.532939, -2.308198], 'ABLIM3': [-8.3152331, -6.39541076, -8.7026693, -4.7626633, -9.064794], 'ABO': [-7.3071556, -7.146287, -7.4039717, -7.1021605, -7.426547], 'ABP1': [-5.043387, -5.5227637, -6.479496, -6.621311, -3.5038342], 'ABR': [4.1594563, 4.395466, 4.3334055, 3.85252, 4.547434], 'ABRA': [-7.5288954, -5.0816774, -6.6456428, -7.2622585, -7.6311307], 'ABT1': [-1.2014389, -1.6133046, -1.1205416, -1.7967935, -1.46207], 'ABTB1': [2.1097794, 2.5995178, 2.40991593, 1.6793689569999999, 4.688216199999999], 'ABTB2': [-2.3811474, -2.359599, -2.533659, -1.6266832, -1.5705929], 'ACAA1': [4.6205206, 4.2452879, 3.73272516, 4.4472141, 5.295465500000001], 'ACAA2': [1.2371387, 1.2707539, 1.9868469, 2.1454563, 1.2646112], 'ACACA': [-11.342644, -11.9572687, -11.871556, -8.4872532, -11.0053837], 'ACACB': [-5.6445055, -5.9599175, -4.49924, -4.660137, -4.173883], 'ACAD10': [-9.178745469999999, -10.13194556, -8.809484099999999, -8.846339766, -7.928208784000001], 'ACAD11': [-1.7105169, -2.0726829, -1.3038492, -1.5708971, -2.049047], 'ACAD8': [-2.37114045, -2.7611013, -1.8885279000000001, -3.2005038999999997, -2.46819977], 'ACAD9': [2.0959654, 2.675339654, 2.2586020999999996, 3.0270967, 2.3611125470000003], 'ACADL': [-6.538789, -6.4952345, -5.5564976, -6.8421926, -6.8785048], 'ACADM': [-1.0278292, -0.8900089, -0.04274273, 0.5626459, -1.1752162], 'ACADS': [-3.1051044, -2.7642422, -3.105947, -1.6386485, -2.1175466], 'ACADSB': [-4.98120118, -6.7336068, -5.1612573, -5.412092660000001, -6.3190217], 'ACADVL': [4.5316467, 4.8567753, 4.3535566, 4.7093363, 5.045844], 'ACAN': [-5.181829, -4.773378, -5.258699, -5.9512634, -5.290766], 'ACAP1': [-1.16984986, -0.8138245999999999, -1.2016487000000002, -0.8507890399999999, -0.9950757000000001], 'ACAP2': [1.12271214, 0.802750578, 2.72405823, 0.90293887, 2.4363136], 'ACAP3': [-12.2100244, -10.6799294, -12.066364700000001, -11.467922699999999, -10.5877032], 'ACAT1': [0.7947096999999999, 1.0266851999999997, 1.55346297, 2.8571472, 0.06352710000000017], 'ACAT2': [1.63053322, 1.3659477500000001, 0.96924586, 2.483555805, 0.9836378000000001], 'ACBD3': [-0.3144627, -1.0357976, -1.7451067, -0.27079149999999985, -1.6651744499999999], 'ACBD4': [-4.0879316, -2.724246, -0.39037469999999996, 0.05358639999999992, -2.5280304], 'ACBD5': [-5.79491051, -6.85836501, -5.40001874, -4.7711992, -5.1585912800000004], 'ACBD6': [1.8423347, 2.0644531, 2.0107822, 2.03154, 2.3613071], 'ACBD7': [-3.0800323, -2.2434773, -2.2077913, -2.2273965, -1.4388709], 'ACCN1': [-4.360352, -5.3642793, -5.157859, -6.0670023, -4.8050423], 'ACCN2': [-3.995082, -3.5359678, -3.3330522, -1.7383995, -1.3894367], 'ACCN3': [-4.706303, -4.257624, -4.9579554, -3.271546, -3.8409743], 'ACCN4': [-7.4128046, -7.290801, -7.524151, -7.2136765, -6.860148], 'ACCN5': [-7.009403, -6.841119, -7.325863, -6.880547, -7.1541514], 'ACCS': [0.23649216, 1.4211206, 1.0881166, -0.5122328, 0.8612385], 'ACD': [0.5862436, 0.6035557, 0.19909477, 0.52528, 0.3198347], 'ACE': [-13.547852800000001, -17.4194617, -16.5371519, -17.740468, -13.943834200000001], 'ACE2': [-7.23131, -7.119723, -7.4764404, -7.1291866, -7.366466], 'ACER1': [-4.896104, -3.8794484, -5.319996, -5.237687, -4.9432716], 'ACER3': [-6.6761112, -8.2445415, -7.27013495, -9.4878195, -10.092452600000001], 'ACHE': [-3.8559752, -3.9458804, -4.583341, -4.3558445, -3.378273], 'ACIN1': [0.7603836, 0.99685764, 0.8268814, 1.7168608, -0.079520226], 'ACLY': [0.38022804, 0.412138, 0.08678627, 0.147089, 0.4066553], 'ACMSD': [-7.1809416, -5.843359, -7.451509, -7.0912375, -7.338464], 'ACN9': [1.1430626, 0.7836666, 0.9518442, 0.51330376, -0.021832466], 'ACO1': [-1.40317197, -1.8843564940000002, -2.24013423, -2.8537455, -1.833668265], 'ACO2': [5.2178001, 5.5096644, 4.2981871, 6.511754, 5.9552527], 'ACOT1': [0.7868767, 0.8424082, 0.75664234, 1.2970495, 1.2177763], 'ACOT11': [-16.408636100000003, -14.790592199999999, -17.982816200000002, -18.0501052, -16.5575398], 'ACOT12': [-7.0225816, -6.8067093, -7.133717, -6.763191, -7.0988083], 'ACOT13': [1.1285734, 1.1647539, 0.89674854, 1.7105026, 0.74302197], 'ACOT2': [-2.1154037, -2.5177779, -2.44614984, -1.4156661000000001, -1.1240697], 'ACOT4': [-1.79389, -1.5896764, -1.3459873, -1.3705006, -1.6034584], 'ACOT7': [-1.6337776, -1.2804909, -1.2576017, 0.9806242, -0.90421104], 'ACOT8': [-0.29053974, 0.041664124, -0.49155045, -0.15271378, -0.34722137], 'ACOT9': [2.7252636, 2.52243797, 2.04512406, 2.2083330500000002, 2.4873247], 'ACOX1': [-7.766797862000001, -7.211201600000001, -8.62706211, -8.14803854, -7.59882087], 'ACOX2': [-3.3249192, -3.3608236, -4.105567, -3.9730997, -3.745706], 'ACOX3': [-2.6122059, -2.6702690000000002, -3.3615551, -3.3754831000000003, -2.8767762], 'ACOXL': [-7.2625484, -7.1502724, -7.427355, -3.0364175, -7.385391], 'ACP1': [-5.1440669, -5.2066701, -5.3446321, -5.5635848, -5.4709596], 'ACP2': [-7.8325366999999995, -7.903704599999999, -8.759673, -4.3251777, -6.2901712], 'ACP5': [3.2569914, 2.759904, 3.3639917, 4.447199, 3.4829054], 'ACP6': [-3.2169528, -3.0801902, -3.4940128, -3.1373043, -2.6426635], 'ACPL2': [0.50189495, 1.3311968, -0.084204674, 0.05305481, -0.24776363], 'ACPP': [-6.1080341, -5.7067457, -4.7667212, -8.8658736, -5.8529135], 'ACPT': [-3.6121526, -4.053385, -4.4567885, -4.6687727, -4.4847374], 'ACR': [-10.281091700000001, -10.6681005, -10.9398676, -10.967090500000001, -10.552845], 'ACRBP': [1.2464142, 1.7671185, 0.8749714, 1.8071194, 0.72149944], 'ACRC': [1.0909805, 0.52371407, 0.1806364, 0.48336792, 0.20383072], 'ACRV1': [-5.674367, -7.1800632, -7.4921412, -7.1311216, -7.4125724], 'ACSBG1': [-11.4070084, -10.587768, -11.2596709, -9.2162844, -12.045697700000002], 'ACSBG2': [-4.8861513, -5.7379456, -6.3619385, -6.0682516, -6.3843765], 'ACSF2': [-0.99878407, -1.4018011, -1.4597378, -1.2621794, -0.81375504], 'ACSF3': [-0.28560069999999993, -1.40667204, -0.20403479999999996, -0.11452867, 0.24322510000000008], 'ACSL1': [0.9514036, 2.413104, 1.998766, 0.99235344, 2.6377115], 'ACSL3': [-1.5468415800000002, -1.7404795000000002, -2.1830596499999997, -2.0155115, -2.8115629999999996], 'ACSL4': [-0.5112896, -0.056881905, -0.41926956, -0.75004864, -0.41520977], 'ACSL5': [-0.596859, -0.7243061, -0.52190685, -0.2998848, -0.599843], 'ACSL6': [-11.3485674, -14.5851996, -13.39652443, -14.845241600000001, -15.0063285], 'ACSM1': [-4.7167435, -5.0712967, -4.7472897, -5.193263, -4.5040483], 'ACSM2A': [-19.1286755, -19.546621000000002, -20.4018622, -19.5713956, -19.737284799999998], 'ACSM2B': [-5.927985, -5.3562965, -7.2507296, -7.2405396, -6.303212], 'ACSM3': [-4.344808, -4.1558995, -3.9980268, -4.500384, -4.041515], 'ACSM5': [-21.1506905, -21.1800815, -21.9647515, -21.0945042, -21.7255961], 'ACSS1': [-0.8348091999999998, -0.9425234999999996, -0.4974660999999998, 0.14134780000000013, -0.2674646000000003], 'ACSS2': [-1.8410072499999999, -0.8970055800000001, -1.31744959, -2.8160043, 0.9462614], 'ACSS3': [-7.3240376, -7.2490735, -7.5138493, -7.177437, -7.488361], 'ACTA1': [-4.424113, -4.785349, -5.5042844, -5.605706, -4.7932854], 'ACTA2': [-0.82315254, -1.4225492, -0.6007261, -0.51765156, -1.1715164], 'ACTB': [23.4101327, 24.8861091, 25.2548084, 23.179679699999998, 26.09254], 'ACTBL2': [-0.50547314, 0.03707218, 0.25015354, -0.032699585, 1.204628], 'ACTC1': [-1.74121, -1.6949024, -1.4414039, -2.2562386, 0.42049740000000035], 'ACTG1': [18.8395413, 18.4781458, 18.836751800000002, 19.509356500000003, 18.1723604], 'ACTG2': [-4.083104, -4.354103, -7.2761574, -3.5374637, -5.5926127], 'ACTL6A': [1.6886635, 1.5176992, 1.2817659, 1.7075338, 1.1334505], 'ACTL6B': [-3.3464222, -3.53649, -2.9222069, -3.34277, -3.7558079], 'ACTL7A': [-6.169523, -5.52555, -6.5140753, -6.038963, -6.365119]}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (30, 18489)\n",
"Quartiles for 'Rheumatoid_Arthritis':\n",
" 25%: 1.0\n",
" 50% (Median): 1.0\n",
" 75%: 1.0\n",
"Min: 1.0\n",
"Max: 1.0\n",
"The distribution of the feature 'Rheumatoid_Arthritis' in this dataset is severely biased.\n",
"\n",
"Linked data was not usable and was not saved.\n"
]
}
],
"source": [
"# 1. First, we need to extract clinical features since we missed this step earlier\n",
"selected_clinical_data = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait, \n",
" trait_row, \n",
" convert_trait,\n",
" age_row, \n",
" convert_age,\n",
" gender_row, \n",
" convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_data))\n",
"\n",
"# Save the clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_data.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# 2. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
"# Note: Already normalized in step 7\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 3. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_data, gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview:\")\n",
"print(preview_df(linked_data))\n",
"\n",
"# 4. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 5. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
"is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 6. Conduct quality check and save the cohort information.\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Gene mapping was limited to a few recognized genes (TP53, BRCA1, BRCA2, IL6, IL1B, TNF)\"\n",
")\n",
"\n",
"# 7. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Usable linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Linked data was not usable and was not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|