File size: 29,761 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "9fed05d7",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:13.320599Z",
     "iopub.status.busy": "2025-03-25T03:53:13.320498Z",
     "iopub.status.idle": "2025-03-25T03:53:13.490101Z",
     "shell.execute_reply": "2025-03-25T03:53:13.489745Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Sarcoma\"\n",
    "cohort = \"GSE133228\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Sarcoma\"\n",
    "in_cohort_dir = \"../../input/GEO/Sarcoma/GSE133228\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Sarcoma/GSE133228.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Sarcoma/gene_data/GSE133228.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Sarcoma/clinical_data/GSE133228.csv\"\n",
    "json_path = \"../../output/preprocess/Sarcoma/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "315e4635",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "85dd80e0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:13.491531Z",
     "iopub.status.busy": "2025-03-25T03:53:13.491368Z",
     "iopub.status.idle": "2025-03-25T03:53:13.642779Z",
     "shell.execute_reply": "2025-03-25T03:53:13.642408Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files in the directory:\n",
      "['GSE133228-GPL16311_series_matrix.txt.gz', 'GSE133228_family.soft.gz']\n",
      "SOFT file: ../../input/GEO/Sarcoma/GSE133228/GSE133228_family.soft.gz\n",
      "Matrix file: ../../input/GEO/Sarcoma/GSE133228/GSE133228-GPL16311_series_matrix.txt.gz\n",
      "Background Information:\n",
      "!Series_title\t\"STAG2 promotes CTCF-anchored loop extrusion and cis-promoter and -enhancer interactions\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: Male', 'gender: Female'], 1: ['age: 3', 'age: 11', 'age: 4', 'age: 25', 'age: 13', 'age: 15', 'age: 19', 'age: 8', 'age: 20', 'age: 24', 'age: 16', 'age: 14', 'age: 5', 'age: 37', 'age: 26', 'age: 10', 'age: 35', 'age: 23', 'age: 17', 'age: 12', 'age: 9', 'age: 0', 'age: 36', 'age: 27', 'age: 1', 'age: 18', 'age: 29', 'age: 6', 'age: 28', 'age: 31'], 2: ['tumor type: primary tumor']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Check what files are actually in the directory\n",
    "import os\n",
    "print(\"Files in the directory:\")\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(files)\n",
    "\n",
    "# 2. Find appropriate files with more flexible pattern matching\n",
    "soft_file = None\n",
    "matrix_file = None\n",
    "\n",
    "for file in files:\n",
    "    file_path = os.path.join(in_cohort_dir, file)\n",
    "    # Look for files that might contain SOFT or matrix data with various possible extensions\n",
    "    if 'soft' in file.lower() or 'family' in file.lower() or file.endswith('.soft.gz'):\n",
    "        soft_file = file_path\n",
    "    if 'matrix' in file.lower() or file.endswith('.txt.gz') or file.endswith('.tsv.gz'):\n",
    "        matrix_file = file_path\n",
    "\n",
    "if not soft_file:\n",
    "    print(\"Warning: Could not find a SOFT file. Using the first .gz file as fallback.\")\n",
    "    gz_files = [f for f in files if f.endswith('.gz')]\n",
    "    if gz_files:\n",
    "        soft_file = os.path.join(in_cohort_dir, gz_files[0])\n",
    "\n",
    "if not matrix_file:\n",
    "    print(\"Warning: Could not find a matrix file. Using the second .gz file as fallback if available.\")\n",
    "    gz_files = [f for f in files if f.endswith('.gz')]\n",
    "    if len(gz_files) > 1 and soft_file != os.path.join(in_cohort_dir, gz_files[1]):\n",
    "        matrix_file = os.path.join(in_cohort_dir, gz_files[1])\n",
    "    elif len(gz_files) == 1 and not soft_file:\n",
    "        matrix_file = os.path.join(in_cohort_dir, gz_files[0])\n",
    "\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# 3. Read files if found\n",
    "if soft_file and matrix_file:\n",
    "    # Read the matrix file to obtain background information and sample characteristics data\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    \n",
    "    try:\n",
    "        background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "        \n",
    "        # Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "        sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "        \n",
    "        # Explicitly print out all the background information and the sample characteristics dictionary\n",
    "        print(\"Background Information:\")\n",
    "        print(background_info)\n",
    "        print(\"Sample Characteristics Dictionary:\")\n",
    "        print(sample_characteristics_dict)\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing files: {e}\")\n",
    "        # Try swapping files if first attempt fails\n",
    "        print(\"Trying to swap SOFT and matrix files...\")\n",
    "        temp = soft_file\n",
    "        soft_file = matrix_file\n",
    "        matrix_file = temp\n",
    "        try:\n",
    "            background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "            sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "            print(\"Background Information:\")\n",
    "            print(background_info)\n",
    "            print(\"Sample Characteristics Dictionary:\")\n",
    "            print(sample_characteristics_dict)\n",
    "        except Exception as e:\n",
    "            print(f\"Still error after swapping: {e}\")\n",
    "else:\n",
    "    print(\"Could not find necessary files for processing.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e944276f",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "c1a26138",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:13.644254Z",
     "iopub.status.busy": "2025-03-25T03:53:13.644140Z",
     "iopub.status.idle": "2025-03-25T03:53:13.809076Z",
     "shell.execute_reply": "2025-03-25T03:53:13.808692Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Trait data is not available. Skipping clinical feature extraction.\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import os\n",
    "import re\n",
    "import numpy as np\n",
    "\n",
    "# Load clinical data\n",
    "clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"GSE133228-GPL16311_series_matrix.txt.gz\"), \n",
    "                            sep='\\t', comment='!', skiprows=0)\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the matrix filename \"GSE133228-GPL16311_series_matrix.txt.gz\", this likely contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (Sarcoma)\n",
    "# From sample characteristics dict, key 2 has 'tumor type: primary tumor', but it's a constant value\n",
    "# As per instructions, constant features are useless in associative studies\n",
    "trait_row = None\n",
    "\n",
    "# For age\n",
    "# Age is available under key 1 in the sample characteristics dictionary\n",
    "age_row = 1\n",
    "\n",
    "# For gender\n",
    "# Gender is available under key 0 in the sample characteristics dictionary\n",
    "gender_row = 0\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "# For trait (keeping this function in case it's needed later)\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Handle if value is already numeric\n",
    "    if isinstance(value, (int, float)):\n",
    "        return 1 if value == 1 else 0\n",
    "    \n",
    "    # For string values, extract after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = str(value).split(':', 1)[1].strip()\n",
    "    \n",
    "    if 'primary tumor' in str(value).lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return 0\n",
    "\n",
    "# For age\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Handle if value is already numeric\n",
    "    if isinstance(value, (int, float)):\n",
    "        return float(value)\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = str(value).split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "# For gender\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Handle if value is already numeric\n",
    "    if isinstance(value, (int, float)):\n",
    "        return 1 if value == 1 else 0 if value == 0 else None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = str(value).split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = str(value).lower()\n",
    "    \n",
    "    if 'female' in value:\n",
    "        return 0\n",
    "    elif 'male' in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine if trait data is available (trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we skip this step\n",
    "if trait_row is not None:\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "else:\n",
    "    print(\"Trait data is not available. Skipping clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "694ba24a",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b0ff1dfd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:13.810332Z",
     "iopub.status.busy": "2025-03-25T03:53:13.810218Z",
     "iopub.status.idle": "2025-03-25T03:53:13.988108Z",
     "shell.execute_reply": "2025-03-25T03:53:13.987734Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\n",
      "Found potential subseries references:\n",
      "!Series_relation = SuperSeries of: GSE132966\n",
      "!Series_relation = SuperSeries of: GSE133154\n",
      "!Series_relation = SuperSeries of: GSE133227\n",
      "!Series_relation = SuperSeries of: GSE142162\n",
      "!Series_relation = SuperSeries of: GSE156649\n",
      "!Series_relation = SuperSeries of: GSE156650\n",
      "!Series_relation = SuperSeries of: GSE156653\n",
      "!Series_relation = SuperSeries of: GSE171948\n",
      "\n",
      "Gene data extraction result:\n",
      "Number of rows: 19070\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['100009676_at', '10000_at', '10001_at', '10002_at', '10003_at',\n",
      "       '100048912_at', '100049716_at', '10004_at', '10005_at', '10006_at',\n",
      "       '10007_at', '10008_at', '100093630_at', '10009_at', '1000_at',\n",
      "       '100101467_at', '100101938_at', '10010_at', '100113407_at', '10011_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the path to the soft and matrix files\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Looking more carefully at the background information\n",
    "# This is a SuperSeries which doesn't contain direct gene expression data\n",
    "# Need to investigate the soft file to find the subseries\n",
    "print(\"This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\")\n",
    "\n",
    "# Open the SOFT file to try to identify subseries\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    subseries_lines = []\n",
    "    for i, line in enumerate(f):\n",
    "        if 'Series_relation' in line and 'SuperSeries of' in line:\n",
    "            subseries_lines.append(line.strip())\n",
    "        if i > 1000:  # Limit search to first 1000 lines\n",
    "            break\n",
    "\n",
    "# Display the subseries found\n",
    "if subseries_lines:\n",
    "    print(\"Found potential subseries references:\")\n",
    "    for line in subseries_lines:\n",
    "        print(line)\n",
    "else:\n",
    "    print(\"No subseries references found in the first 1000 lines of the SOFT file.\")\n",
    "\n",
    "# Despite trying to extract gene data, we expect it might fail because this is a SuperSeries\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(\"\\nGene data extraction result:\")\n",
    "    print(\"Number of rows:\", len(gene_data))\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(\"This confirms the dataset is a SuperSeries without direct gene expression data.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9700f5dc",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "46424275",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:13.989373Z",
     "iopub.status.busy": "2025-03-25T03:53:13.989267Z",
     "iopub.status.idle": "2025-03-25T03:53:13.991151Z",
     "shell.execute_reply": "2025-03-25T03:53:13.990841Z"
    }
   },
   "outputs": [],
   "source": [
    "# Analyze the gene identifiers\n",
    "# The format \"XXX_at\" where XXX is a numerical ID suggests these are probe identifiers\n",
    "# from a microarray platform (likely Affymetrix), not standard human gene symbols.\n",
    "# These need to be mapped to official gene symbols for biological interpretation.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "52093038",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "e40cb645",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:13.992259Z",
     "iopub.status.busy": "2025-03-25T03:53:13.992159Z",
     "iopub.status.idle": "2025-03-25T03:53:15.548757Z",
     "shell.execute_reply": "2025-03-25T03:53:15.548384Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1_at', '10_at', '100_at', '1000_at', '10000_at'], 'SPOT_ID': ['1', '10', '100', '1000', '10000'], 'Description': ['alpha-1-B glycoprotein', 'N-acetyltransferase 2 (arylamine N-acetyltransferase)', 'adenosine deaminase', 'cadherin 2, type 1, N-cadherin (neuronal)', 'v-akt murine thymoma viral oncogene homolog 3 (protein kinase B, gamma)']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ddf97a15",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "676792eb",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:15.550095Z",
     "iopub.status.busy": "2025-03-25T03:53:15.549973Z",
     "iopub.status.idle": "2025-03-25T03:53:15.675314Z",
     "shell.execute_reply": "2025-03-25T03:53:15.674940Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping info:\n",
      "Total number of probe-gene mappings: 19037\n",
      "Sample mappings (first 5 rows):\n",
      "         ID                                               Gene\n",
      "0      1_at                             alpha-1-B glycoprotein\n",
      "1     10_at  N-acetyltransferase 2 (arylamine N-acetyltrans...\n",
      "2    100_at                                adenosine deaminase\n",
      "3   1000_at          cadherin 2, type 1, N-cadherin (neuronal)\n",
      "4  10000_at  v-akt murine thymoma viral oncogene homolog 3 ...\n",
      "\n",
      "After mapping:\n",
      "Number of unique genes: 2034\n",
      "First 5 gene symbols:\n",
      "Index(['A-', 'A-2', 'A-52', 'A-I', 'A-II'], dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify which columns in the gene annotation dataframe contain the identifiers and symbols\n",
    "# From the preview, we can see:\n",
    "# - 'ID' column contains identifiers like '1_at', matching the gene expression data format\n",
    "# - 'Description' column contains gene names/descriptions\n",
    "\n",
    "# 2. Extract the gene mapping dataframe with probe IDs and gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')\n",
    "\n",
    "# Print info about the mapping\n",
    "print(\"Gene mapping info:\")\n",
    "print(\"Total number of probe-gene mappings:\", len(gene_mapping))\n",
    "print(\"Sample mappings (first 5 rows):\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping)\n",
    "\n",
    "# Print some statistics about the gene data after mapping\n",
    "print(\"\\nAfter mapping:\")\n",
    "print(\"Number of unique genes:\", len(gene_data))\n",
    "print(\"First 5 gene symbols:\")\n",
    "print(gene_data.index[:5])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f43cf360",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "1f5b831d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T03:53:15.676708Z",
     "iopub.status.busy": "2025-03-25T03:53:15.676587Z",
     "iopub.status.idle": "2025-03-25T03:53:18.131484Z",
     "shell.execute_reply": "2025-03-25T03:53:18.131171Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original gene expression data shape: (19070, 79)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Created mapping with 19037 entries\n",
      "Processing batch 1/20\n",
      "Processing batch 2/20\n",
      "Processing batch 3/20\n",
      "Processing batch 4/20\n",
      "Processing batch 5/20\n",
      "Processing batch 6/20\n",
      "Processing batch 7/20\n",
      "Processing batch 8/20\n",
      "Processing batch 9/20\n",
      "Processing batch 10/20\n",
      "Processing batch 11/20\n",
      "Processing batch 12/20\n",
      "Processing batch 13/20\n",
      "Processing batch 14/20\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Processing batch 15/20\n",
      "Processing batch 16/20\n",
      "Processing batch 17/20\n",
      "Processing batch 18/20\n",
      "Processing batch 19/20\n",
      "Processing batch 20/20\n",
      "After mapping: (4280, 79)\n",
      "After normalization: (1171, 79)\n",
      "Gene expression data saved to ../../output/preprocess/Sarcoma/gene_data/GSE133228.csv\n",
      "Sample IDs from gene data: 79 samples\n",
      "Clinical data shape: (1, 79)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data saved to ../../output/preprocess/Sarcoma/clinical_data/GSE133228.csv\n",
      "Selecting top 5000 genes with highest variance...\n",
      "Subset gene data shape: (1171, 79)\n",
      "Shape of linked data: (79, 1172)\n",
      "Handling missing values...\n",
      "Shape of linked data after handling missing values: (79, 1172)\n",
      "Checking for bias in features...\n",
      "Quartiles for 'Sarcoma':\n",
      "  25%: 1.0\n",
      "  50% (Median): 1.0\n",
      "  75%: 1.0\n",
      "Min: 1\n",
      "Max: 1\n",
      "The distribution of the feature 'Sarcoma' in this dataset is severely biased.\n",
      "\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/media/techt/DATA/GenoAgent/tools/preprocess.py:455: FutureWarning: Downcasting object dtype arrays on .fillna, .ffill, .bfill is deprecated and will change in a future version. Call result.infer_objects(copy=False) instead. To opt-in to the future behavior, set `pd.set_option('future.no_silent_downcasting', True)`\n",
      "  df[gene_cols] = df[gene_cols].fillna(df[gene_cols].mean())\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Dataset validation failed due to trait bias. Final linked data not saved.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols - let's take a more memory-efficient approach\n",
    "# Instead of doing all at once, process in smaller chunks\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get fresh gene expression data\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Original gene expression data shape: {gene_data.shape}\")\n",
    "\n",
    "# Get the gene annotation again\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Description')\n",
    "print(f\"Created mapping with {len(gene_mapping)} entries\")\n",
    "\n",
    "# Process and map in chunks to reduce memory usage\n",
    "batch_size = 1000\n",
    "num_batches = (len(gene_data) + batch_size - 1) // batch_size\n",
    "result_dfs = []\n",
    "\n",
    "for i in range(num_batches):\n",
    "    print(f\"Processing batch {i+1}/{num_batches}\")\n",
    "    start_idx = i * batch_size\n",
    "    end_idx = min((i + 1) * batch_size, len(gene_data))\n",
    "    \n",
    "    # Get a subset of the expression data\n",
    "    batch_expr = gene_data.iloc[start_idx:end_idx]\n",
    "    \n",
    "    # Process this batch\n",
    "    batch_mapping = gene_mapping[gene_mapping['ID'].isin(batch_expr.index)]\n",
    "    if len(batch_mapping) > 0:\n",
    "        mapped_batch = apply_gene_mapping(batch_expr, batch_mapping)\n",
    "        result_dfs.append(mapped_batch)\n",
    "    \n",
    "    # Clear memory\n",
    "    del batch_expr\n",
    "    del batch_mapping\n",
    "\n",
    "# Combine results\n",
    "if result_dfs:\n",
    "    mapped_gene_data = pd.concat(result_dfs)\n",
    "    print(f\"After mapping: {mapped_gene_data.shape}\")\n",
    "    \n",
    "    # Normalize gene symbols using NCBI database\n",
    "    try:\n",
    "        gene_data_normalized = normalize_gene_symbols_in_index(mapped_gene_data)\n",
    "        print(f\"After normalization: {gene_data_normalized.shape}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error during normalization: {e}\")\n",
    "        # Fallback to unmapped data\n",
    "        gene_data_normalized = mapped_gene_data\n",
    "else:\n",
    "    print(\"Mapping failed for all batches, using original data\")\n",
    "    gene_data_normalized = gene_data\n",
    "\n",
    "# Save the gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data_normalized.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Create clinical data with the trait information\n",
    "sample_ids = gene_data.columns.tolist()\n",
    "print(f\"Sample IDs from gene data: {len(sample_ids)} samples\")\n",
    "\n",
    "# Create a clinical dataframe with the trait (Sarcoma)\n",
    "clinical_df = pd.DataFrame(index=[trait], columns=sample_ids)\n",
    "clinical_df.loc[trait] = 1  # All samples are sarcoma tumors\n",
    "\n",
    "print(f\"Clinical data shape: {clinical_df.shape}\")\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data - using smaller version for efficiency\n",
    "# Select a subset of genes to reduce memory issues\n",
    "print(\"Selecting top 5000 genes with highest variance...\")\n",
    "if len(gene_data_normalized) > 5000:\n",
    "    gene_variance = gene_data_normalized.var(axis=1)\n",
    "    top_genes = gene_variance.nlargest(5000).index\n",
    "    gene_data_subset = gene_data_normalized.loc[top_genes]\n",
    "else:\n",
    "    gene_data_subset = gene_data_normalized\n",
    "\n",
    "print(f\"Subset gene data shape: {gene_data_subset.shape}\")\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data_subset)\n",
    "print(f\"Shape of linked data: {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "print(\"Handling missing values...\")\n",
    "linked_data_cleaned = handle_missing_values(linked_data, trait)\n",
    "print(f\"Shape of linked data after handling missing values: {linked_data_cleaned.shape}\")\n",
    "\n",
    "# 5. Check if the trait and demographic features are biased\n",
    "print(\"Checking for bias in features...\")\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_cleaned, trait)\n",
    "\n",
    "# 6. Validate the dataset and save cohort information\n",
    "note = \"Dataset contains expression data for pediatric tumors including rhabdomyosarcoma (sarcoma). All samples are tumor samples, so trait bias is expected and the dataset is not suitable for case-control analysis.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased,\n",
    "    df=unbiased_linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Saved processed linked data to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset validation failed due to trait bias. Final linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}