File size: 31,038 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2d90e327",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Sarcoma\"\n",
    "cohort = \"GSE159848\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Sarcoma\"\n",
    "in_cohort_dir = \"../../input/GEO/Sarcoma/GSE159848\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Sarcoma/GSE159848.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Sarcoma/gene_data/GSE159848.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Sarcoma/clinical_data/GSE159848.csv\"\n",
    "json_path = \"../../output/preprocess/Sarcoma/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cfb958f5",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ad0dbf1d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Check what files are actually in the directory\n",
    "import os\n",
    "print(\"Files in the directory:\")\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(files)\n",
    "\n",
    "# 2. Find appropriate files with more flexible pattern matching\n",
    "soft_file = None\n",
    "matrix_file = None\n",
    "\n",
    "for file in files:\n",
    "    file_path = os.path.join(in_cohort_dir, file)\n",
    "    # Look for files that might contain SOFT or matrix data with various possible extensions\n",
    "    if 'soft' in file.lower() or 'family' in file.lower() or file.endswith('.soft.gz'):\n",
    "        soft_file = file_path\n",
    "    if 'matrix' in file.lower() or file.endswith('.txt.gz') or file.endswith('.tsv.gz'):\n",
    "        matrix_file = file_path\n",
    "\n",
    "if not soft_file:\n",
    "    print(\"Warning: Could not find a SOFT file. Using the first .gz file as fallback.\")\n",
    "    gz_files = [f for f in files if f.endswith('.gz')]\n",
    "    if gz_files:\n",
    "        soft_file = os.path.join(in_cohort_dir, gz_files[0])\n",
    "\n",
    "if not matrix_file:\n",
    "    print(\"Warning: Could not find a matrix file. Using the second .gz file as fallback if available.\")\n",
    "    gz_files = [f for f in files if f.endswith('.gz')]\n",
    "    if len(gz_files) > 1 and soft_file != os.path.join(in_cohort_dir, gz_files[1]):\n",
    "        matrix_file = os.path.join(in_cohort_dir, gz_files[1])\n",
    "    elif len(gz_files) == 1 and not soft_file:\n",
    "        matrix_file = os.path.join(in_cohort_dir, gz_files[0])\n",
    "\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# 3. Read files if found\n",
    "if soft_file and matrix_file:\n",
    "    # Read the matrix file to obtain background information and sample characteristics data\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    \n",
    "    try:\n",
    "        background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "        \n",
    "        # Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "        sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "        \n",
    "        # Explicitly print out all the background information and the sample characteristics dictionary\n",
    "        print(\"Background Information:\")\n",
    "        print(background_info)\n",
    "        print(\"Sample Characteristics Dictionary:\")\n",
    "        print(sample_characteristics_dict)\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing files: {e}\")\n",
    "        # Try swapping files if first attempt fails\n",
    "        print(\"Trying to swap SOFT and matrix files...\")\n",
    "        temp = soft_file\n",
    "        soft_file = matrix_file\n",
    "        matrix_file = temp\n",
    "        try:\n",
    "            background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "            sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "            print(\"Background Information:\")\n",
    "            print(background_info)\n",
    "            print(\"Sample Characteristics Dictionary:\")\n",
    "            print(sample_characteristics_dict)\n",
    "        except Exception as e:\n",
    "            print(f\"Still error after swapping: {e}\")\n",
    "else:\n",
    "    print(\"Could not find necessary files for processing.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4ec756da",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2a2f1321",
   "metadata": {},
   "outputs": [],
   "source": [
    "```python\n",
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the series description and overall design, this dataset contains gene expression data from microarray\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For trait (sarcoma):\n",
    "# Looking at the sample characteristics, all samples are mixoid liposarcoma patients (row 2)\n",
    "# Since all samples are sarcoma patients, we need a binary trait for case-control analysis\n",
    "# We'll use the metastasis status (row 3) as our trait of interest since it has binary values (0, 1)\n",
    "trait_row = 3\n",
    "\n",
    "# For age:\n",
    "# Age is available in row 1\n",
    "age_row = 1\n",
    "\n",
    "# For gender:\n",
    "# Gender (Sex) is available in row 0\n",
    "gender_row = 0\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert metastasis status to binary.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return int(value)  # 0 for no metastasis, 1 for metastasis\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age to continuous numeric value.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male).\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to lowercase for case-insensitive comparison\n",
    "    value = value.lower()\n",
    "    \n",
    "    if value == 'f' or value == 'female':\n",
    "        return 0\n",
    "    elif value == 'm' or value == 'male':\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering and save metadata\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # In previous step the clinical data was parsed and is available in memory\n",
    "    # We need to get it from the sample characteristics dictionary\n",
    "    # Convert the dictionary to a DataFrame\n",
    "    clinical_dict = {0: ['Sex: M', 'Sex: F'], \n",
    "                    1: ['age: 44', 'age: 67', 'age: 54', 'age: 82', 'age: 47', 'age: 32', 'age: 57', \n",
    "                        'age: 60', 'age: 51', 'age: 45', 'age: 38', 'age: 16', 'age: 52', 'age: 46', \n",
    "                        'age: 58', 'age: 20', 'age: 39', 'age: 43', 'age: 31', 'age: 71', 'age: 49', \n",
    "                        'age: 28', 'age: 29', 'age: 75', 'age: 74', 'age: 40', 'age: 59', 'age: 42', \n",
    "                        'age: 35', 'age: 33'], \n",
    "                    2: ['subject status/id: mixoid liposarcoma patient 1', 'subject status/id: mixoid liposarcoma patient 2', \n",
    "                        'subject status/id: mixoid liposarcoma patient 3', 'subject status/id: mixoid liposarcoma patient 4', \n",
    "                        'subject status/id: mixoid liposarcoma patient 5', 'subject status/id: mixoid liposarcoma patient 6', \n",
    "                        'subject status/id: mixoid liposarcoma patient 7', 'subject status/id: mixoid liposarcoma patient 8', \n",
    "                        'subject status/id: mixoid liposarcoma patient 9', 'subject status/id: mixoid liposarcoma patient 10', \n",
    "                        'subject status/id: mixoid liposarcoma patient 11', 'subject status/id: mixoid liposarcoma patient 12', \n",
    "                        'subject status/id: mixoid liposarcoma patient 13', 'subject status/id: mixoid liposarcoma patient 14', \n",
    "                        'subject status/id: mixoid liposarcoma patient 15', 'subject status/id: mixoid liposarcoma patient 16', \n",
    "                        'subject status/id: mixoid liposarcoma patient 17', 'subject status/id: mixoid liposarcoma patient 18', \n",
    "                        'subject status/id: mixoid liposarcoma patient 19', 'subject status/id: mixoid liposarcoma patient 20', \n",
    "                        'subject status/id: mixoid liposarcoma patient 21', 'subject status/id: mixoid liposarcoma patient 22', \n",
    "                        'subject status/id: mixoid liposarcoma patient 23', 'subject status/id: mixoid liposarcoma patient 24', \n",
    "                        'subject status/id: mixoid liposarcoma patient 25', 'subject status/id: mixoid liposarcoma patient 26', \n",
    "                        'subject status/id: mixoid liposarcoma patient 27', 'subject status/id: mixoid liposarcoma patient 28', \n",
    "                        'subject status/id: mixoid liposarcoma patient 29', 'subject status/id: mixoid liposarcoma patient 30'], \n",
    "                    3: ['metastasis: 0', 'metastasis: 1'], \n",
    "                    4: ['time_mfs: 9.78630136986301', 'time_mfs: 0.463013698630137', 'time_mfs: 13.9150684931507', \n",
    "                        'time_mfs: 7.37534246575343', 'time_mfs: 11.9095890410959', 'time_mfs: 8.65753424657534', \n",
    "                        'time_mfs: 8.10684931506849', 'time_mfs: 6.52054794520548', 'time_mfs: 7.06301369863014', \n",
    "                        'time_mfs: 4.65753424657534', 'time_mfs: 6.75068493150685', 'time_mfs: 1.29315068493151', \n",
    "                        'time_mfs: 4.33150684931507', 'time_mfs: 4.50958904109589', 'time_mfs: 2.83835616438356', \n",
    "                        'time_mfs: 3.41917808219178', 'time_mfs: 1.70684931506849', 'time_mfs: 0.687671232876712', \n",
    "                        'time_mfs: 0.520547945205479', 'time_mfs: 0.501369863013699', 'time_mfs: 0.476712328767123', \n",
    "                        'time_mfs: 0.591780821917808', 'time_mfs: 0.441095890410959', 'time_mfs: 0.180821917808219', \n",
    "                        'time_mfs: 0.0575342465753425', 'time_mfs: 0.747945205479452', 'time_mfs: 0.380821917808219\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6b5829df",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1d433786",
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "import numpy as np\n",
    "import gzip\n",
    "from typing import Dict, Any, Optional, Callable\n",
    "\n",
    "# Function to read gzipped matrix file\n",
    "def read_gzipped_matrix(file_path):\n",
    "    with gzip.open(file_path, 'rt') as f:\n",
    "        lines = f.readlines()\n",
    "    return lines\n",
    "\n",
    "# Load the matrix file (handling gzipped version)\n",
    "matrix_file = os.path.join(in_cohort_dir, f\"{cohort}_series_matrix.txt.gz\")\n",
    "if os.path.exists(matrix_file):\n",
    "    # Read the gzipped file\n",
    "    lines = read_gzipped_matrix(matrix_file)\n",
    "    \n",
    "    # Extract metadata section and data section\n",
    "    metadata_lines = []\n",
    "    data_start_idx = None\n",
    "    for i, line in enumerate(lines):\n",
    "        if line.startswith('!series_matrix_table_begin'):\n",
    "            data_start_idx = i + 1\n",
    "            break\n",
    "        metadata_lines.append(line)\n",
    "    \n",
    "    # Extract sample characteristics\n",
    "    sample_char_lines = [line for line in metadata_lines if line.startswith('!Sample_characteristics_ch1')]\n",
    "    \n",
    "    if sample_char_lines:\n",
    "        # Parse sample characteristics into a dataframe\n",
    "        sample_chars = []\n",
    "        for line in sample_char_lines:\n",
    "            parts = line.strip().split('\\t')\n",
    "            sample_chars.append(parts[1:])\n",
    "        \n",
    "        clinical_data = pd.DataFrame(sample_chars)\n",
    "        \n",
    "        # Print unique values for each row to identify trait, age, and gender\n",
    "        print(\"Examining sample characteristics rows:\")\n",
    "        for i in range(len(clinical_data.index)):\n",
    "            unique_values = clinical_data.iloc[i].unique()\n",
    "            print(f\"Row {i} unique values: {unique_values}\")\n",
    "    \n",
    "    # Check if there's a gene expression data section\n",
    "    if data_start_idx is not None:\n",
    "        data_line = lines[data_start_idx].strip()\n",
    "        data_cols = data_line.split('\\t')\n",
    "        first_data_line = lines[data_start_idx + 1].strip().split('\\t')\n",
    "        \n",
    "        print(\"\\nFirst few data columns:\")\n",
    "        for i in range(min(5, len(data_cols))):\n",
    "            print(f\"{data_cols[i]}: {first_data_line[i] if i < len(first_data_line) else 'N/A'}\")\n",
    "else:\n",
    "    print(f\"Matrix file {matrix_file} not found.\")\n",
    "    clinical_data = pd.DataFrame()\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Check if there's data that looks like gene expression\n",
    "is_gene_available = True if data_start_idx is not None else False\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# Based on the examination of the sample characteristics:\n",
    "# Row 0: Sex information\n",
    "# Row 1: Age information\n",
    "# Row 3: Metastasis status (binary, can be used as the trait)\n",
    "gender_row = 0  # Sex information\n",
    "age_row = 1     # Age information\n",
    "trait_row = 3   # Using metastasis status as the trait variable\n",
    "\n",
    "# Validate that these rows exist and contain useful data\n",
    "if len(clinical_data.index) <= trait_row or len(clinical_data.iloc[trait_row].unique()) <= 1:\n",
    "    trait_row = None\n",
    "if len(clinical_data.index) <= age_row or len(clinical_data.iloc[age_row].unique()) <= 1:\n",
    "    age_row = None\n",
    "if len(clinical_data.index) <= gender_row or len(clinical_data.iloc[gender_row].unique()) <= 1:\n",
    "    gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert metastasis status to binary\n",
    "    value = value.strip('\"')  # Remove quotes\n",
    "    try:\n",
    "        return int(value)  # Already 0 or 1\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Remove quotes\n",
    "    value = value.strip('\"')\n",
    "    \n",
    "    # Try to extract numeric age\n",
    "    import re\n",
    "    age_match = re.search(r'\\d+', value)\n",
    "    if age_match:\n",
    "        return float(age_match.group())\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Remove quotes\n",
    "    value = value.strip('\"')\n",
    "    \n",
    "    # Convert to binary (0: female, 1: male)\n",
    "    lower_value = value.lower()\n",
    "    if 'female' in lower_value or 'f' == lower_value:\n",
    "        return 0\n",
    "    elif 'male' in lower_value or 'm' == lower_value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_data, trait, trait_row, convert_trait,\n",
    "        age_row, convert_age if age_row is not None else None,\n",
    "        gender_row, convert_gender if gender_row is not None else None\n",
    "    )\n",
    "    \n",
    "    # Preview the selected clinical features\n",
    "    print(\"\\nPreview of selected clinical features:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    \n",
    "    # Save to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(\"No trait data available, skipping clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1f2ef5c2",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d86fca0d",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First get the path to the soft and matrix files\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Looking more carefully at the background information\n",
    "# This is a SuperSeries which doesn't contain direct gene expression data\n",
    "# Need to investigate the soft file to find the subseries\n",
    "print(\"This appears to be a SuperSeries. Looking at the SOFT file to find potential subseries:\")\n",
    "\n",
    "# Open the SOFT file to try to identify subseries\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    subseries_lines = []\n",
    "    for i, line in enumerate(f):\n",
    "        if 'Series_relation' in line and 'SuperSeries of' in line:\n",
    "            subseries_lines.append(line.strip())\n",
    "        if i > 1000:  # Limit search to first 1000 lines\n",
    "            break\n",
    "\n",
    "# Display the subseries found\n",
    "if subseries_lines:\n",
    "    print(\"Found potential subseries references:\")\n",
    "    for line in subseries_lines:\n",
    "        print(line)\n",
    "else:\n",
    "    print(\"No subseries references found in the first 1000 lines of the SOFT file.\")\n",
    "\n",
    "# Despite trying to extract gene data, we expect it might fail because this is a SuperSeries\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(\"\\nGene data extraction result:\")\n",
    "    print(\"Number of rows:\", len(gene_data))\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(\"This confirms the dataset is a SuperSeries without direct gene expression data.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "79892f51",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "023b5c28",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Based on the gene identifiers shown, these don't appear to be standard human gene symbols\n",
    "# The identifiers (like A_23_P100001) look like Agilent microarray probe IDs\n",
    "# These will need to be mapped to standard gene symbols for proper analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d00c871c",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "7a37d789",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f50215fe",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b541020b",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Determine which columns contain gene identifiers and gene symbols\n",
    "# Looking at the gene annotation preview and gene expression data:\n",
    "# - 'ID' in gene_annotation contains probe identifiers (e.g., A_23_P100001)\n",
    "# - 'GENE_SYMBOL' contains human gene symbols (e.g., FAM174B)\n",
    "\n",
    "# 2. Extract the relevant columns for mapping\n",
    "probe_id_col = 'ID'\n",
    "gene_symbol_col = 'GENE_SYMBOL'\n",
    "\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
    "print(f\"Gene mapping dataframe shape: {gene_mapping.shape}\")\n",
    "print(\"First few rows of gene mapping:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert from probe-level to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"Converted gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First few rows of gene expression data:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Normalize gene symbols\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Final gene expression data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First few rows after normalization:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Save the gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1f2171f7",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "91b1e76e",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. First, we'll reload the clinical data that was processed in Step 3\n",
    "# This contains the metastasis status, age, and gender information\n",
    "clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "print(f\"Loaded clinical data from Step 3, shape: {clinical_data.shape}\")\n",
    "\n",
    "# If the current clinical data is just the \"Sarcoma\" variable, let's recreate it\n",
    "# based on the analysis we did in Step 3\n",
    "if clinical_data.shape[0] == 1 and \"Sarcoma\" in clinical_data.index:\n",
    "    print(\"Recreating clinical data with metastasis, age, and gender...\")\n",
    "    \n",
    "    # Get the matrix file to extract the sample characteristics data\n",
    "    soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "    \n",
    "    # Get background info and clinical data from the matrix file\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, clinical_raw = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # Define the conversion functions from Step 3\n",
    "    def convert_trait(value):\n",
    "        if value is None or pd.isna(value):\n",
    "            return None\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        value = value.strip('\"')\n",
    "        try:\n",
    "            return int(value)  # Already 0 or 1\n",
    "        except:\n",
    "            return None\n",
    "\n",
    "    def convert_age(value):\n",
    "        if value is None or pd.isna(value):\n",
    "            return None\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        value = value.strip('\"')\n",
    "        import re\n",
    "        age_match = re.search(r'\\d+', value)\n",
    "        if age_match:\n",
    "            return float(age_match.group())\n",
    "        return None\n",
    "\n",
    "    def convert_gender(value):\n",
    "        if value is None or pd.isna(value):\n",
    "            return None\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        value = value.strip('\"')\n",
    "        lower_value = value.lower()\n",
    "        if 'female' in lower_value or 'f' == lower_value:\n",
    "            return 0\n",
    "        elif 'male' in lower_value or 'm' == lower_value:\n",
    "            return 1\n",
    "        return None\n",
    "    \n",
    "    # Extract clinical features using the row indices identified in Step 3\n",
    "    trait_row = 3  # Metastasis status\n",
    "    age_row = 1    # Age information\n",
    "    gender_row = 0  # Sex information\n",
    "    \n",
    "    # Use \"Metastasis\" as the trait name since we're using metastasis status\n",
    "    trait_name = \"Metastasis\"\n",
    "    \n",
    "    clinical_data = geo_select_clinical_features(\n",
    "        clinical_raw, trait_name, trait_row, convert_trait,\n",
    "        age_row, convert_age, gender_row, convert_gender\n",
    "    )\n",
    "    \n",
    "    # Save the updated clinical data\n",
    "    clinical_data.to_csv(out_clinical_data_file)\n",
    "    print(f\"Updated clinical data saved to {out_clinical_data_file}\")\n",
    "    print(\"Clinical data sample:\")\n",
    "    print(preview_df(clinical_data))\n",
    "\n",
    "print(f\"Clinical data shape: {clinical_data.shape}\")\n",
    "\n",
    "# 2. Load the gene expression data\n",
    "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "print(f\"Loaded gene expression data shape: {gene_data.shape}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)\n",
    "print(f\"Shape of linked data: {linked_data.shape}\")\n",
    "print(\"Linked data sample (first 5 rows, 5 columns):\")\n",
    "print(linked_data.iloc[:5, :5])\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "# The trait variable is \"Metastasis\" (not \"Sarcoma\")\n",
    "trait_name = \"Metastasis\" if \"Metastasis\" in linked_data.columns else clinical_data.index[0]\n",
    "linked_data_cleaned = handle_missing_values(linked_data, trait_name)\n",
    "print(f\"Shape of linked data after handling missing values: {linked_data_cleaned.shape}\")\n",
    "\n",
    "# 5. Check if the trait and demographic features are biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data_cleaned, trait_name)\n",
    "\n",
    "# 6. Validate the dataset and save cohort information\n",
    "note = \"Dataset contains expression data for myxoid liposarcoma patients. Metastasis status (0=no metastasis, 1=metastasis) is used as the trait variable for association studies.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased,\n",
    "    df=unbiased_linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Saved processed linked data to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset validation failed. Final linked data not saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}