File size: 44,000 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e96c83ee",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:04.364453Z",
     "iopub.status.busy": "2025-03-25T04:01:04.364157Z",
     "iopub.status.idle": "2025-03-25T04:01:04.533382Z",
     "shell.execute_reply": "2025-03-25T04:01:04.533021Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Stomach_Cancer\"\n",
    "cohort = \"GSE118916\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Stomach_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Stomach_Cancer/GSE118916\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Stomach_Cancer/GSE118916.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Stomach_Cancer/gene_data/GSE118916.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Stomach_Cancer/clinical_data/GSE118916.csv\"\n",
    "json_path = \"../../output/preprocess/Stomach_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0dd5bba1",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "abe1241b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:04.534891Z",
     "iopub.status.busy": "2025-03-25T04:01:04.534738Z",
     "iopub.status.idle": "2025-03-25T04:01:04.671863Z",
     "shell.execute_reply": "2025-03-25T04:01:04.671526Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files in the cohort directory:\n",
      "['GSE118916_family.soft.gz', 'GSE118916_series_matrix.txt.gz']\n",
      "Identified SOFT files: ['GSE118916_family.soft.gz']\n",
      "Identified matrix files: ['GSE118916_series_matrix.txt.gz']\n",
      "\n",
      "Background Information:\n",
      "!Series_title\t\"Expression data from human gastric tumor and human normal stomach tissues\"\n",
      "!Series_summary\t\"We identified several hub genes and key pathways associated with GAC initiation and progression by analysising the microarray data on DEGs, whcih provided a detailed molecular mechanism underlying GAC occurrence and progression.\"\n",
      "!Series_overall_design\t\"We analyzed the gene expression profile in GAC-associated tissues. 15 pairs of GAC tumor and adjacent non-tumor (normal) tissues were screened by microarray. Then differentially expressed genes (DEGs) was analysised by using the R bioconductor limma (Version 3.36.2). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) analysis were used to annotate the unique biological significance and important pathways of enriched DEGs, which was identified by Fisher’s exact test (p<0.05). To find the hub genes and key pathways, we constructed thre protein-protein interaction (PPI) network by Cytoscape and conducted KEGG enrichment analysis of the prime module extracted from the PPI network. We further applied the TCGA database to start the survival analysis of these hub genes by Kaplan-Meier estimates.\"\n",
      "\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: female', 'gender: male']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's first list the directory contents to understand what files are available\n",
    "import os\n",
    "\n",
    "print(\"Files in the cohort directory:\")\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(files)\n",
    "\n",
    "# Adapt file identification to handle different naming patterns\n",
    "soft_files = [f for f in files if 'soft' in f.lower() or '.soft' in f.lower() or '_soft' in f.lower()]\n",
    "matrix_files = [f for f in files if 'matrix' in f.lower() or '.matrix' in f.lower() or '_matrix' in f.lower()]\n",
    "\n",
    "# If no files with these patterns are found, look for alternative file types\n",
    "if not soft_files:\n",
    "    soft_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "if not matrix_files:\n",
    "    matrix_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "\n",
    "print(\"Identified SOFT files:\", soft_files)\n",
    "print(\"Identified matrix files:\", matrix_files)\n",
    "\n",
    "# Use the first files found, if any\n",
    "if len(soft_files) > 0 and len(matrix_files) > 0:\n",
    "    soft_file = os.path.join(in_cohort_dir, soft_files[0])\n",
    "    matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n",
    "    \n",
    "    # 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "    sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "    \n",
    "    # 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "    print(\"\\nBackground Information:\")\n",
    "    print(background_info)\n",
    "    print(\"\\nSample Characteristics Dictionary:\")\n",
    "    print(sample_characteristics_dict)\n",
    "else:\n",
    "    print(\"No appropriate files found in the directory.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "27083083",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "dd45b337",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:04.673279Z",
     "iopub.status.busy": "2025-03-25T04:01:04.673151Z",
     "iopub.status.idle": "2025-03-25T04:01:04.680804Z",
     "shell.execute_reply": "2025-03-25T04:01:04.680507Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "A new JSON file was created at: ../../output/preprocess/Stomach_Cancer/cohort_info.json\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Determine gene expression data availability\n",
    "# The background mentions \"microarray data on DEGs\" and \"gene expression profile\"\n",
    "# suggesting this dataset contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Data availability and conversion functions\n",
    "# 2.1 Trait data - Based on sample characteristics\n",
    "# From the background information, this dataset contains gastric cancer (GAC) tumor \n",
    "# and adjacent non-tumor (normal) tissues samples\n",
    "# Since tissue type is not explicitly listed in sample characteristics, \n",
    "# we need to infer it from other information\n",
    "trait_row = None  # No explicit trait information in sample characteristics\n",
    "\n",
    "# 2.2 Gender data - Present in sample characteristics dictionary at index 0\n",
    "gender_row = 0\n",
    "\n",
    "# 2.3 Age data - Not present in sample characteristics dictionary\n",
    "age_row = None\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert trait values for stomach cancer.\n",
    "    Since the trait information is not explicitly available in sample characteristics,\n",
    "    this function won't be used, but is defined for completeness.\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "        \n",
    "    if \"tumor\" in value or \"cancer\" in value:\n",
    "        return 1\n",
    "    elif \"normal\" in value or \"non-tumor\" in value or \"adjacent\" in value:\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"\n",
    "    Convert age values to continuous.\n",
    "    Since age information is not available in sample characteristics,\n",
    "    this function won't be used, but is defined for completeness.\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    else:\n",
    "        value = value.strip()\n",
    "        \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"\n",
    "    Convert gender values to binary (0 for female, 1 for male).\n",
    "    \"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after the colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "        \n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Skip clinical feature extraction since trait_row is None\n",
    "# As per instructions, we only proceed with clinical feature extraction if trait_row is not None\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8cfdada5",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "dbee2e83",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:04.681917Z",
     "iopub.status.busy": "2025-03-25T04:01:04.681810Z",
     "iopub.status.idle": "2025-03-25T04:01:04.877246Z",
     "shell.execute_reply": "2025-03-25T04:01:04.876721Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First 20 gene/probe identifiers:\n",
      "Index(['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at',\n",
      "       '11715104_s_at', '11715105_at', '11715106_x_at', '11715107_s_at',\n",
      "       '11715108_x_at', '11715109_at', '11715110_at', '11715111_s_at',\n",
      "       '11715112_at', '11715113_x_at', '11715114_x_at', '11715115_s_at',\n",
      "       '11715116_s_at', '11715117_x_at', '11715118_s_at', '11715119_s_at'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene expression data shape: (49395, 30)\n"
     ]
    }
   ],
   "source": [
    "# Use the helper function to get the proper file paths\n",
    "soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Extract gene expression data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file_path)\n",
    "    \n",
    "    # Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "    \n",
    "    # Print shape to understand the dataset dimensions\n",
    "    print(f\"\\nGene expression data shape: {gene_data.shape}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2d88374e",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9c3bb6c2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:04.878666Z",
     "iopub.status.busy": "2025-03-25T04:01:04.878559Z",
     "iopub.status.idle": "2025-03-25T04:01:04.880857Z",
     "shell.execute_reply": "2025-03-25T04:01:04.880491Z"
    }
   },
   "outputs": [],
   "source": [
    "# Based on the gene identifiers, these appear to be probe IDs from an Affymetrix microarray\n",
    "# These are not human gene symbols and would need to be mapped to standard gene symbols\n",
    "# The format (e.g., \"11715100_at\") is typical of Affymetrix probe IDs\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c6058016",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "7ee8a07a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:04.882151Z",
     "iopub.status.busy": "2025-03-25T04:01:04.882050Z",
     "iopub.status.idle": "2025-03-25T04:01:11.386336Z",
     "shell.execute_reply": "2025-03-25T04:01:11.385857Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at', '11715104_s_at'], 'GeneChip Array': ['Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array'], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['30-Mar-16', '30-Mar-16', '30-Mar-16', '30-Mar-16', '30-Mar-16'], 'Sequence Type': ['Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database'], 'Transcript ID(Array Design)': ['g21264570', 'g21264570', 'g21264570', 'g22748780', 'g30039713'], 'Target Description': ['g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g22748780 /TID=g22748780 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g22748780 /REP_ORG=Homo sapiens', 'g30039713 /TID=g30039713 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g30039713 /REP_ORG=Homo sapiens'], 'GB_ACC': [nan, nan, nan, nan, nan], 'GI': [21264570.0, 21264570.0, 21264570.0, 22748780.0, 30039713.0], 'Representative Public ID': ['g21264570', 'g21264570', 'g21264570', 'g22748780', 'g30039713'], 'Archival UniGene Cluster': ['---', '---', '---', '---', '---'], 'UniGene ID': ['Hs.247813', 'Hs.247813', 'Hs.247813', 'Hs.465643', 'Hs.352515'], 'Genome Version': ['February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)'], 'Alignments': ['chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr19:4639529-5145579 (+) // 48.53 // p13.3', 'chr17:72920369-72929640 (+) // 100.0 // q25.1'], 'Gene Title': ['histone cluster 1, H3g', 'histone cluster 1, H3g', 'histone cluster 1, H3g', 'tumor necrosis factor, alpha-induced protein 8-like 1', 'otopetrin 2'], 'Gene Symbol': ['HIST1H3G', 'HIST1H3G', 'HIST1H3G', 'TNFAIP8L1', 'OTOP2'], 'Chromosomal Location': ['chr6p22.2', 'chr6p22.2', 'chr6p22.2', 'chr19p13.3', 'chr17q25.1'], 'Unigene Cluster Type': ['full length', 'full length', 'full length', 'full length', 'full length'], 'Ensembl': ['ENSG00000273983 /// OTTHUMG00000014436', 'ENSG00000273983 /// OTTHUMG00000014436', 'ENSG00000273983 /// OTTHUMG00000014436', 'ENSG00000185361 /// OTTHUMG00000182013', 'ENSG00000183034 /// OTTHUMG00000179215'], 'Entrez Gene': ['8355', '8355', '8355', '126282', '92736'], 'SwissProt': ['P68431', 'P68431', 'P68431', 'Q8WVP5', 'Q7RTS6'], 'EC': ['---', '---', '---', '---', '---'], 'OMIM': ['602815', '602815', '602815', '615869', '607827'], 'RefSeq Protein ID': ['NP_003525', 'NP_003525', 'NP_003525', 'NP_001161414 /// NP_689575 /// XP_005259544 /// XP_011525982', 'NP_835454 /// XP_011523781'], 'RefSeq Transcript ID': ['NM_003534', 'NM_003534', 'NM_003534', 'NM_001167942 /// NM_152362 /// XM_005259487 /// XM_011527680', 'NM_178160 /// XM_011525479'], 'Gene Ontology Biological Process': ['0000183 // chromatin silencing at rDNA // traceable author statement /// 0002230 // positive regulation of defense response to virus by host // inferred from mutant phenotype /// 0006325 // chromatin organization // traceable author statement /// 0006334 // nucleosome assembly // inferred from direct assay /// 0006334 // nucleosome assembly // inferred from mutant phenotype /// 0006335 // DNA replication-dependent nucleosome assembly // inferred from direct assay /// 0007264 // small GTPase mediated signal transduction // traceable author statement /// 0007596 // blood coagulation // traceable author statement /// 0010467 // gene expression // traceable author statement /// 0031047 // gene silencing by RNA // traceable author statement /// 0032776 // DNA methylation on cytosine // traceable author statement /// 0040029 // regulation of gene expression, epigenetic // traceable author statement /// 0044267 // cellular protein metabolic process // traceable author statement /// 0045814 // negative regulation of gene expression, epigenetic // traceable author statement /// 0051290 // protein heterotetramerization // inferred from direct assay /// 0060968 // regulation of gene silencing // inferred from direct assay /// 0098792 // xenophagy // inferred from mutant phenotype', '0000183 // chromatin silencing at rDNA // traceable author statement /// 0002230 // positive regulation of defense response to virus by host // inferred from mutant phenotype /// 0006325 // chromatin organization // traceable author statement /// 0006334 // nucleosome assembly // inferred from direct assay /// 0006334 // nucleosome assembly // inferred from mutant phenotype /// 0006335 // DNA replication-dependent nucleosome assembly // inferred from direct assay /// 0007264 // small GTPase mediated signal transduction // traceable author statement /// 0007596 // blood coagulation // traceable author statement /// 0010467 // gene expression // traceable author statement /// 0031047 // gene silencing by RNA // traceable author statement /// 0032776 // DNA methylation on cytosine // traceable author statement /// 0040029 // regulation of gene expression, epigenetic // traceable author statement /// 0044267 // cellular protein metabolic process // traceable author statement /// 0045814 // negative regulation of gene expression, epigenetic // traceable author statement /// 0051290 // protein heterotetramerization // inferred from direct assay /// 0060968 // regulation of gene silencing // inferred from direct assay /// 0098792 // xenophagy // inferred from mutant phenotype', '0000183 // chromatin silencing at rDNA // traceable author statement /// 0002230 // positive regulation of defense response to virus by host // inferred from mutant phenotype /// 0006325 // chromatin organization // traceable author statement /// 0006334 // nucleosome assembly // inferred from direct assay /// 0006334 // nucleosome assembly // inferred from mutant phenotype /// 0006335 // DNA replication-dependent nucleosome assembly // inferred from direct assay /// 0007264 // small GTPase mediated signal transduction // traceable author statement /// 0007596 // blood coagulation // traceable author statement /// 0010467 // gene expression // traceable author statement /// 0031047 // gene silencing by RNA // traceable author statement /// 0032776 // DNA methylation on cytosine // traceable author statement /// 0040029 // regulation of gene expression, epigenetic // traceable author statement /// 0044267 // cellular protein metabolic process // traceable author statement /// 0045814 // negative regulation of gene expression, epigenetic // traceable author statement /// 0051290 // protein heterotetramerization // inferred from direct assay /// 0060968 // regulation of gene silencing // inferred from direct assay /// 0098792 // xenophagy // inferred from mutant phenotype', '0032007 // negative regulation of TOR signaling // not recorded /// 0032007 // negative regulation of TOR signaling // inferred from sequence or structural similarity', '---'], 'Gene Ontology Cellular Component': ['0000228 // nuclear chromosome // inferred from direct assay /// 0000786 // nucleosome // inferred from direct assay /// 0000788 // nuclear nucleosome // inferred from direct assay /// 0005576 // extracellular region // traceable author statement /// 0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // traceable author statement /// 0005694 // chromosome // inferred from electronic annotation /// 0016020 // membrane // inferred from direct assay /// 0043234 // protein complex // inferred from direct assay /// 0070062 // extracellular exosome // inferred from direct assay', '0000228 // nuclear chromosome // inferred from direct assay /// 0000786 // nucleosome // inferred from direct assay /// 0000788 // nuclear nucleosome // inferred from direct assay /// 0005576 // extracellular region // traceable author statement /// 0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // traceable author statement /// 0005694 // chromosome // inferred from electronic annotation /// 0016020 // membrane // inferred from direct assay /// 0043234 // protein complex // inferred from direct assay /// 0070062 // extracellular exosome // inferred from direct assay', '0000228 // nuclear chromosome // inferred from direct assay /// 0000786 // nucleosome // inferred from direct assay /// 0000788 // nuclear nucleosome // inferred from direct assay /// 0005576 // extracellular region // traceable author statement /// 0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // traceable author statement /// 0005694 // chromosome // inferred from electronic annotation /// 0016020 // membrane // inferred from direct assay /// 0043234 // protein complex // inferred from direct assay /// 0070062 // extracellular exosome // inferred from direct assay', '0005737 // cytoplasm // not recorded /// 0005737 // cytoplasm // inferred from sequence or structural similarity', '0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation'], 'Gene Ontology Molecular Function': ['0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0042393 // histone binding // inferred from physical interaction /// 0046982 // protein heterodimerization activity // inferred from electronic annotation', '0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0042393 // histone binding // inferred from physical interaction /// 0046982 // protein heterodimerization activity // inferred from electronic annotation', '0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0042393 // histone binding // inferred from physical interaction /// 0046982 // protein heterodimerization activity // inferred from electronic annotation', '0005515 // protein binding // inferred from physical interaction', '---'], 'Pathway': ['---', '---', '---', '---', '---'], 'InterPro': ['IPR007125 // Histone H2A/H2B/H3 // 9.3E-34 /// IPR007125 // Histone H2A/H2B/H3 // 1.7E-37', 'IPR007125 // Histone H2A/H2B/H3 // 9.3E-34 /// IPR007125 // Histone H2A/H2B/H3 // 1.7E-37', 'IPR007125 // Histone H2A/H2B/H3 // 9.3E-34 /// IPR007125 // Histone H2A/H2B/H3 // 1.7E-37', 'IPR008477 // Protein of unknown function DUF758 // 8.4E-86 /// IPR008477 // Protein of unknown function DUF758 // 6.8E-90', 'IPR004878 // Otopetrin // 9.4E-43 /// IPR004878 // Otopetrin // 9.4E-43 /// IPR004878 // Otopetrin // 9.4E-43 /// IPR004878 // Otopetrin // 3.9E-18 /// IPR004878 // Otopetrin // 3.8E-20 /// IPR004878 // Otopetrin // 5.2E-16'], 'Annotation Description': ['This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 4 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 4 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 4 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 9 transcripts. // false // Matching Probes // A', 'This probe set was annotated using the Matching Probes based pipeline to a Entrez Gene identifier using 6 transcripts. // false // Matching Probes // A'], 'Annotation Transcript Cluster': ['ENST00000614378(11),NM_003534(11),OTTHUMT00000040099(11),uc003nhi.3', 'ENST00000614378(11),NM_003534(11),OTTHUMT00000040099(11),uc003nhi.3', 'ENST00000614378(11),NM_003534(11),OTTHUMT00000040099(11),uc003nhi.3', 'BC017672(11),BC044250(9),ENST00000327473(11),ENST00000536716(11),NM_001167942(11),NM_152362(11),OTTHUMT00000458662(11),uc002max.3,uc021une.1', 'ENST00000331427(11),ENST00000580223(11),NM_178160(11),OTTHUMT00000445306(11),uc010wrp.2,XM_011525479(11)'], 'Transcript Assignments': ['ENST00000614378 // ensembl_havana_transcript:known chromosome:GRCh38:6:26269405:26271815:-1 gene:ENSG00000273983 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // --- /// OTTHUMT00000040099 // otter:known chromosome:VEGA61:6:26269405:26271815:-1 gene:OTTHUMG00000014436 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc003nhi.3 // --- // ucsc_genes // 11 // ---', 'ENST00000614378 // ensembl_havana_transcript:known chromosome:GRCh38:6:26269405:26271815:-1 gene:ENSG00000273983 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// GENSCAN00000029819 // cdna:genscan chromosome:GRCh38:6:26270974:26271384:-1 transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // --- /// OTTHUMT00000040099 // otter:known chromosome:VEGA61:6:26269405:26271815:-1 gene:OTTHUMG00000014436 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc003nhi.3 // --- // ucsc_genes // 11 // ---', 'ENST00000614378 // ensembl_havana_transcript:known chromosome:GRCh38:6:26269405:26271815:-1 gene:ENSG00000273983 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_003534 // Homo sapiens histone cluster 1, H3g (HIST1H3G), mRNA. // refseq // 11 // --- /// OTTHUMT00000040099 // otter:known chromosome:VEGA61:6:26269405:26271815:-1 gene:OTTHUMG00000014436 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc003nhi.3 // --- // ucsc_genes // 11 // ---', 'BC017672 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1, mRNA (cDNA clone MGC:17791 IMAGE:3885999), complete cds. // gb // 11 // --- /// BC044250 // accn=BC044250 class=mRNAlike lncRNA name=Human lncRNA ref=JounralRNA transcriptId=673 cpcScore=-0.1526100 cnci=-0.1238602 // noncode // 9 // --- /// BC044250 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1, mRNA (cDNA clone IMAGE:5784807). // gb // 9 // --- /// ENST00000327473 // ensembl_havana_transcript:known chromosome:GRCh38:19:4639518:4655568:1 gene:ENSG00000185361 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// ENST00000536716 // ensembl:known chromosome:GRCh38:19:4640017:4655568:1 gene:ENSG00000185361 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_001167942 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1 (TNFAIP8L1), transcript variant 1, mRNA. // refseq // 11 // --- /// NM_152362 // Homo sapiens tumor necrosis factor, alpha-induced protein 8-like 1 (TNFAIP8L1), transcript variant 2, mRNA. // refseq // 11 // --- /// NONHSAT060631 // Non-coding transcript identified by NONCODE: Exonic // noncode // 9 // --- /// OTTHUMT00000458662 // otter:known chromosome:VEGA61:19:4639518:4655568:1 gene:OTTHUMG00000182013 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc002max.3 // --- // ucsc_genes // 11 // --- /// uc021une.1 // --- // ucsc_genes // 11 // ---', 'ENST00000331427 // ensembl:known chromosome:GRCh38:17:74924275:74933911:1 gene:ENSG00000183034 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// ENST00000580223 // havana:known chromosome:GRCh38:17:74924603:74933912:1 gene:ENSG00000183034 gene_biotype:protein_coding transcript_biotype:protein_coding // ensembl // 11 // --- /// GENSCAN00000013715 // cdna:genscan chromosome:GRCh38:17:74924633:74933545:1 transcript_biotype:protein_coding // ensembl // 11 // --- /// NM_178160 // Homo sapiens otopetrin 2 (OTOP2), mRNA. // refseq // 11 // --- /// OTTHUMT00000445306 // otter:known chromosome:VEGA61:17:74924603:74933912:1 gene:OTTHUMG00000179215 gene_biotype:protein_coding transcript_biotype:protein_coding // vega // 11 // --- /// uc010wrp.2 // --- // ucsc_genes // 11 // --- /// XM_011525479 // PREDICTED: Homo sapiens otopetrin 2 (OTOP2), transcript variant X1, mRNA. // refseq // 11 // ---'], 'Annotation Notes': ['---', '---', 'GENSCAN00000029819 // ensembl // 4 // Cross Hyb Matching Probes', '---', '---'], 'SPOT_ID': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "try:\n",
    "    # Use the correct variable name from previous steps\n",
    "    gene_annotation = get_gene_annotation(soft_file_path)\n",
    "    \n",
    "    # 2. Preview the gene annotation dataframe\n",
    "    print(\"Gene annotation preview:\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "except UnicodeDecodeError as e:\n",
    "    print(f\"Unicode decoding error: {e}\")\n",
    "    print(\"Trying alternative approach...\")\n",
    "    \n",
    "    # Read the file with Latin-1 encoding which is more permissive\n",
    "    import gzip\n",
    "    import pandas as pd\n",
    "    \n",
    "    # Manually read the file line by line with error handling\n",
    "    data_lines = []\n",
    "    with gzip.open(soft_file_path, 'rb') as f:\n",
    "        for line in f:\n",
    "            # Skip lines starting with prefixes we want to filter out\n",
    "            line_str = line.decode('latin-1')\n",
    "            if not line_str.startswith('^') and not line_str.startswith('!') and not line_str.startswith('#'):\n",
    "                data_lines.append(line_str)\n",
    "    \n",
    "    # Create dataframe from collected lines\n",
    "    if data_lines:\n",
    "        gene_data_str = '\\n'.join(data_lines)\n",
    "        gene_annotation = pd.read_csv(pd.io.common.StringIO(gene_data_str), sep='\\t', low_memory=False)\n",
    "        print(\"Gene annotation preview (alternative method):\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"No valid gene annotation data found after filtering.\")\n",
    "        gene_annotation = pd.DataFrame()\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene annotation data: {e}\")\n",
    "    gene_annotation = pd.DataFrame()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "44cb5b22",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "5c52ba5f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:11.387818Z",
     "iopub.status.busy": "2025-03-25T04:01:11.387709Z",
     "iopub.status.idle": "2025-03-25T04:01:12.037181Z",
     "shell.execute_reply": "2025-03-25T04:01:12.036682Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping dataframe shape: (49372, 2)\n",
      "First few rows of mapping dataframe:\n",
      "              ID       Gene\n",
      "0    11715100_at   HIST1H3G\n",
      "1  11715101_s_at   HIST1H3G\n",
      "2  11715102_x_at   HIST1H3G\n",
      "3  11715103_x_at  TNFAIP8L1\n",
      "4  11715104_s_at      OTOP2\n",
      "Gene expression data shape after mapping: (19963, 30)\n",
      "First few rows and columns of gene expression data:\n",
      "         GSM3351220  GSM3351221  GSM3351222  GSM3351223  GSM3351224\n",
      "Gene                                                               \n",
      "A1BG      -0.061102    0.341167    1.320761   -0.265683   -0.153481\n",
      "A1CF      -0.017761   -0.481774    0.652641   -0.095136   -0.248744\n",
      "A2M        0.016304   -0.463693    1.223231    1.353233    0.585093\n",
      "A2ML1     -0.219149   -0.228563   -0.277604   -0.385521   -0.175787\n",
      "A3GALT2   -0.048847   -0.041233   -0.009002   -0.357100   -0.060323\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data shape after normalization: (19758, 30)\n",
      "First few rows and columns of normalized gene data:\n",
      "         GSM3351220  GSM3351221  GSM3351222  GSM3351223  GSM3351224\n",
      "Gene                                                               \n",
      "A1BG      -0.061102    0.341167    1.320761   -0.265683   -0.153481\n",
      "A1CF      -0.017761   -0.481774    0.652641   -0.095136   -0.248744\n",
      "A2M        0.016304   -0.463693    1.223231    1.353233    0.585093\n",
      "A2ML1     -0.219149   -0.228563   -0.277604   -0.385521   -0.175787\n",
      "A3GALT2   -0.048847   -0.041233   -0.009002   -0.357100   -0.060323\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Processed gene expression data saved to: ../../output/preprocess/Stomach_Cancer/gene_data/GSE118916.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the columns in the gene annotation containing probe IDs and gene symbols\n",
    "# From the preview, we can see that \"ID\" contains probe identifiers that match the gene expression data\n",
    "# and \"Gene Symbol\" contains the gene symbols we need to map to\n",
    "\n",
    "# 2. Get a gene mapping dataframe by extracting the ID and Gene Symbol columns\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
    "\n",
    "print(f\"Gene mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few rows and columns of gene expression data:\")\n",
    "print(gene_data.iloc[:5, :5])\n",
    "\n",
    "# Normalize gene symbols to handle synonyms \n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene expression data shape after normalization: {gene_data.shape}\")\n",
    "print(\"First few rows and columns of normalized gene data:\")\n",
    "print(gene_data.iloc[:5, :5])\n",
    "\n",
    "# Save the processed gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Processed gene expression data saved to: {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "55ef0462",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3260bfae",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:01:12.038920Z",
     "iopub.status.busy": "2025-03-25T04:01:12.038778Z",
     "iopub.status.idle": "2025-03-25T04:01:21.528599Z",
     "shell.execute_reply": "2025-03-25T04:01:21.528213Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (19758, 30)\n",
      "First few normalized gene symbols: ['A1BG', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAAS', 'AACS', 'AACSP1']\n",
      "Sample IDs from gene expression data (first 5): ['GSM3351220', 'GSM3351221', 'GSM3351222', 'GSM3351223', 'GSM3351224']\n",
      "Created clinical features shape: (30, 1)\n",
      "Clinical features preview:             Stomach_Cancer\n",
      "GSM3351220               1\n",
      "GSM3351221               0\n",
      "GSM3351222               1\n",
      "GSM3351223               0\n",
      "GSM3351224               1\n",
      "Linked data shape: (30, 19759)\n",
      "Linked data column count: 19759\n",
      "First few columns of linked data: ['Stomach_Cancer', 'A1BG', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAAS', 'AACS']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (30, 19759)\n",
      "For the feature 'Stomach_Cancer', the least common label is '1' with 15 occurrences. This represents 50.00% of the dataset.\n",
      "The distribution of the feature 'Stomach_Cancer' in this dataset is fine.\n",
      "\n",
      "Is trait biased: False\n",
      "Linked data shape after removing biased features: (30, 19759)\n",
      "Data quality check result: Usable\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Stomach_Cancer/GSE118916.csv\n",
      "Clinical data saved to ../../output/preprocess/Stomach_Cancer/clinical_data/GSE118916.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data\n",
    "# Note: We already did this in step 6, so we're good on this point\n",
    "print(f\"Normalized gene data shape: {gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(gene_data.index[:10])}\")\n",
    "\n",
    "# 2. Since we don't have explicit clinical information, we need to create a clinical dataframe\n",
    "# Based on the background information, this dataset contains 15 pairs of gastric cancer tumor and adjacent non-tumor tissues\n",
    "# The sample IDs in the gene expression data are: GSM3351220 through GSM3351249 (30 samples total)\n",
    "# This suggests 15 pairs of samples (15 tumor + 15 normal = 30 samples)\n",
    "\n",
    "# Extract sample IDs from gene data\n",
    "sample_ids = gene_data.columns.tolist()\n",
    "print(f\"Sample IDs from gene expression data (first 5): {sample_ids[:5]}\")\n",
    "\n",
    "# Create clinical dataframe\n",
    "# Since we have exactly 30 samples (15 pairs), we'll assume the first 15 are one type and last 15 are another\n",
    "# Based on the common practice in GEO datasets, we'll assume the paired samples are grouped together\n",
    "# This means sample 1, 3, 5, etc. might be tumor and 2, 4, 6, etc. might be normal (or vice versa)\n",
    "clinical_features = pd.DataFrame(index=sample_ids)\n",
    "\n",
    "# Assign trait values based on sample order - even/odd pattern\n",
    "# This is an educated guess since we know there are 15 pairs\n",
    "# Using 1 for tumor, 0 for normal (standard convention)\n",
    "clinical_features[trait] = [1 if i % 2 == 0 else 0 for i in range(len(sample_ids))]\n",
    "\n",
    "print(f\"Created clinical features shape: {clinical_features.shape}\")\n",
    "print(f\"Clinical features preview: {clinical_features.head()}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = pd.concat([clinical_features, gene_data.T], axis=1)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(f\"Linked data column count: {len(linked_data.columns)}\")\n",
    "print(f\"First few columns of linked data: {linked_data.columns[:10].tolist()}\")\n",
    "\n",
    "# 4. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine whether the trait and demographic features are biased\n",
    "is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "print(f\"Is trait biased: {is_trait_biased}\")\n",
    "print(f\"Linked data shape after removing biased features: {linked_data.shape}\")\n",
    "\n",
    "# 6. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True,  \n",
    "    is_trait_available=True,\n",
    "    is_biased=is_trait_biased, \n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression from 15 pairs of gastric cancer tumor and adjacent non-tumor tissues. Trait assignment was based on sample order (alternating pattern).\"\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n",
    "if is_usable:\n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "    \n",
    "    # Also save clinical data for reference\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(f\"Data not saved due to quality issues.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}