File size: 41,682 Bytes
82732bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "a399e65d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:30.123416Z",
     "iopub.status.busy": "2025-03-25T04:02:30.123316Z",
     "iopub.status.idle": "2025-03-25T04:02:30.288463Z",
     "shell.execute_reply": "2025-03-25T04:02:30.288117Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Stomach_Cancer\"\n",
    "cohort = \"GSE172197\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Stomach_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Stomach_Cancer/GSE172197\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Stomach_Cancer/GSE172197.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Stomach_Cancer/gene_data/GSE172197.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Stomach_Cancer/clinical_data/GSE172197.csv\"\n",
    "json_path = \"../../output/preprocess/Stomach_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "79aaa325",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "468eed07",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:30.289962Z",
     "iopub.status.busy": "2025-03-25T04:02:30.289785Z",
     "iopub.status.idle": "2025-03-25T04:02:30.487338Z",
     "shell.execute_reply": "2025-03-25T04:02:30.487015Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files in the cohort directory:\n",
      "['GSE172197_family.soft.gz', 'GSE172197_series_matrix.txt.gz']\n",
      "Identified SOFT files: ['GSE172197_family.soft.gz']\n",
      "Identified matrix files: ['GSE172197_series_matrix.txt.gz']\n",
      "\n",
      "Background Information:\n",
      "!Series_title\t\"mRNA expression profiles of newly established 49 gastric cancer cell lines.\"\n",
      "!Series_summary\t\"Establishment and molecular characterization of 49 peritoneally-metastatic gastric cancer cell lines from 18 patients’ ascites.\"\n",
      "!Series_summary\t\"We performed comprehensive transcriptome analyses using microarrays of our established gastric cancer cell lines.\"\n",
      "!Series_overall_design\t\"49 cancer cell lines\"\n",
      "\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell line: NSC-10C', 'cell line: NSC-10X1A', 'cell line: NSC-10X1aA', 'cell line: NSC-10X1aF', 'cell line: NSC-10X1aX1', 'cell line: NSC-10X1aX1a', 'cell line: NSC-10X1F', 'cell line: NSC-11C', 'cell line: NSC-11X1', 'cell line: NSC-11X1a', 'cell line: NSC-15CA', 'cell line: NSC-15CF', 'cell line: NSC-16C', 'cell line: NSC-16CX1F', 'cell line: NSC-17CA', 'cell line: NSC-17CF', 'cell line: NSC-18C-1', 'cell line: NSC-18C-2', 'cell line: NSC-18C-3', 'cell line: NSC-20C', 'cell line: NSC-20CX1', 'cell line: NSC-20CX1a', 'cell line: NSC-20CX2', 'cell line: NSC-20CX2a', 'cell line: NSC-24C', 'cell line: NSC-24CX1a', 'cell line: NSC-26C-1', 'cell line: NSC-26C-2', 'cell line: NSC-28C', 'cell line: NSC-28CX1']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Let's first list the directory contents to understand what files are available\n",
    "import os\n",
    "\n",
    "print(\"Files in the cohort directory:\")\n",
    "files = os.listdir(in_cohort_dir)\n",
    "print(files)\n",
    "\n",
    "# Adapt file identification to handle different naming patterns\n",
    "soft_files = [f for f in files if 'soft' in f.lower() or '.soft' in f.lower() or '_soft' in f.lower()]\n",
    "matrix_files = [f for f in files if 'matrix' in f.lower() or '.matrix' in f.lower() or '_matrix' in f.lower()]\n",
    "\n",
    "# If no files with these patterns are found, look for alternative file types\n",
    "if not soft_files:\n",
    "    soft_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "if not matrix_files:\n",
    "    matrix_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
    "\n",
    "print(\"Identified SOFT files:\", soft_files)\n",
    "print(\"Identified matrix files:\", matrix_files)\n",
    "\n",
    "# Use the first files found, if any\n",
    "if len(soft_files) > 0 and len(matrix_files) > 0:\n",
    "    soft_file = os.path.join(in_cohort_dir, soft_files[0])\n",
    "    matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n",
    "    \n",
    "    # 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "    background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "    clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "    \n",
    "    # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "    sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "    \n",
    "    # 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "    print(\"\\nBackground Information:\")\n",
    "    print(background_info)\n",
    "    print(\"\\nSample Characteristics Dictionary:\")\n",
    "    print(sample_characteristics_dict)\n",
    "else:\n",
    "    print(\"No appropriate files found in the directory.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8f030b18",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "be597b39",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:30.488483Z",
     "iopub.status.busy": "2025-03-25T04:02:30.488375Z",
     "iopub.status.idle": "2025-03-25T04:02:30.494970Z",
     "shell.execute_reply": "2025-03-25T04:02:30.494698Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Analyze dataset based on background information and sample characteristics\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# From the background information, this dataset contains \"mRNA expression profiles\" of gastric cancer cell lines\n",
    "# and mentions \"comprehensive transcriptome analyses using microarrays\", indicating gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# From the sample characteristics, there's no explicit disease/control status, age, or gender info\n",
    "# The cell lines are derived from gastric cancer, but they're all cancer cell lines without healthy controls\n",
    "trait_row = None  # No trait data (cancer vs. control) available\n",
    "age_row = None    # No age data available\n",
    "gender_row = None  # No gender data available\n",
    "\n",
    "# 2.2 Data Type Conversion Functions (even though we don't have the data, we define these for completeness)\n",
    "def convert_trait(value):\n",
    "    # Since there's no trait data, this function won't be used\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = value.split(\":\", 1)[1].strip() if \":\" in value else value.strip()\n",
    "    \n",
    "    if \"cancer\" in value.lower():\n",
    "        return 1\n",
    "    elif \"normal\" in value.lower() or \"control\" in value.lower() or \"healthy\" in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Since there's no age data, this function won't be used\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = value.split(\":\", 1)[1].strip() if \":\" in value else value.strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Since there's no gender data, this function won't be used\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    value = value.split(\":\", 1)[1].strip() if \":\" in value else value.strip()\n",
    "    \n",
    "    if value.lower() in [\"female\", \"f\"]:\n",
    "        return 0\n",
    "    elif value.lower() in [\"male\", \"m\"]:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# The dataset has gene expression data but no trait data (no control samples)\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, skip this substep\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "576a56bf",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "e3cf9d0b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:30.495952Z",
     "iopub.status.busy": "2025-03-25T04:02:30.495851Z",
     "iopub.status.idle": "2025-03-25T04:02:30.819633Z",
     "shell.execute_reply": "2025-03-25T04:02:30.819266Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First 20 gene/probe identifiers:\n",
      "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n",
      "       '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n",
      "       '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n",
      "       '1552263_at', '1552264_a_at', '1552266_at'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene expression data shape: (54675, 49)\n"
     ]
    }
   ],
   "source": [
    "# Use the helper function to get the proper file paths\n",
    "soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Extract gene expression data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file_path)\n",
    "    \n",
    "    # Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "    \n",
    "    # Print shape to understand the dataset dimensions\n",
    "    print(f\"\\nGene expression data shape: {gene_data.shape}\")\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a244f25a",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "5a6e963e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:30.820797Z",
     "iopub.status.busy": "2025-03-25T04:02:30.820685Z",
     "iopub.status.idle": "2025-03-25T04:02:30.822723Z",
     "shell.execute_reply": "2025-03-25T04:02:30.822437Z"
    }
   },
   "outputs": [],
   "source": [
    "# Review gene identifiers\n",
    "\n",
    "# The identifiers in this dataset (like '1007_s_at', '1053_at', etc.) are Affymetrix probe IDs\n",
    "# from a microarray platform, not human gene symbols.\n",
    "# These are probe set IDs that need to be mapped to official gene symbols.\n",
    "\n",
    "# Microarray platforms like Affymetrix use these probe IDs which need to be converted\n",
    "# to standard gene symbols before analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e241eb5d",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2d8d7603",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:30.823704Z",
     "iopub.status.busy": "2025-03-25T04:02:30.823608Z",
     "iopub.status.idle": "2025-03-25T04:02:35.497816Z",
     "shell.execute_reply": "2025-03-25T04:02:35.497478Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "try:\n",
    "    # Use the correct variable name from previous steps\n",
    "    gene_annotation = get_gene_annotation(soft_file_path)\n",
    "    \n",
    "    # 2. Preview the gene annotation dataframe\n",
    "    print(\"Gene annotation preview:\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "except UnicodeDecodeError as e:\n",
    "    print(f\"Unicode decoding error: {e}\")\n",
    "    print(\"Trying alternative approach...\")\n",
    "    \n",
    "    # Read the file with Latin-1 encoding which is more permissive\n",
    "    import gzip\n",
    "    import pandas as pd\n",
    "    \n",
    "    # Manually read the file line by line with error handling\n",
    "    data_lines = []\n",
    "    with gzip.open(soft_file_path, 'rb') as f:\n",
    "        for line in f:\n",
    "            # Skip lines starting with prefixes we want to filter out\n",
    "            line_str = line.decode('latin-1')\n",
    "            if not line_str.startswith('^') and not line_str.startswith('!') and not line_str.startswith('#'):\n",
    "                data_lines.append(line_str)\n",
    "    \n",
    "    # Create dataframe from collected lines\n",
    "    if data_lines:\n",
    "        gene_data_str = '\\n'.join(data_lines)\n",
    "        gene_annotation = pd.read_csv(pd.io.common.StringIO(gene_data_str), sep='\\t', low_memory=False)\n",
    "        print(\"Gene annotation preview (alternative method):\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"No valid gene annotation data found after filtering.\")\n",
    "        gene_annotation = pd.DataFrame()\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene annotation data: {e}\")\n",
    "    gene_annotation = pd.DataFrame()\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8de95f89",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "dea324f0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:35.499041Z",
     "iopub.status.busy": "2025-03-25T04:02:35.498917Z",
     "iopub.status.idle": "2025-03-25T04:02:35.760313Z",
     "shell.execute_reply": "2025-03-25T04:02:35.759978Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Will map from ID to Gene Symbol\n",
      "Gene mapping dataframe shape: (45782, 2)\n",
      "First few rows of mapping dataframe:\n",
      "          ID              Gene\n",
      "0  1007_s_at  DDR1 /// MIR4640\n",
      "1    1053_at              RFC2\n",
      "2     117_at             HSPA6\n",
      "3     121_at              PAX8\n",
      "4  1255_g_at            GUCA1A\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data shape after mapping: (21278, 49)\n",
      "First few genes and their expression values:\n",
      "           GSM5243830  GSM5243831   GSM5243832   GSM5243833   GSM5243834  \\\n",
      "Gene                                                                       \n",
      "A1BG         3.573000   68.113460    90.104184    30.680121    93.146829   \n",
      "A1BG-AS1    40.920908    9.646156    32.501140    99.996111     5.923232   \n",
      "A1CF      7221.275999  854.425711  3318.552915  1904.586094  2881.262597   \n",
      "A2M        139.724070  200.880079   188.067771   241.584986   145.263539   \n",
      "A2M-AS1     74.847679  152.428161   216.075561   211.613157   191.989181   \n",
      "\n",
      "           GSM5243835   GSM5243836   GSM5243844   GSM5243845   GSM5243846  \\\n",
      "Gene                                                                        \n",
      "A1BG        16.142043    38.469045    18.348572   241.560810   147.073023   \n",
      "A1BG-AS1     9.977724    16.494795    16.934687    13.573422    17.666532   \n",
      "A1CF      2768.575985  2619.561153  4297.496644  4920.868032  3166.096344   \n",
      "A2M        128.468536   295.821907   130.798072   182.676172   273.020101   \n",
      "A2M-AS1     96.828453   564.454099    40.530955   111.246631    56.651065   \n",
      "\n",
      "          ...   GSM5243876   GSM5243877  GSM5243878  GSM5243879  GSM5243880  \\\n",
      "Gene      ...                                                                 \n",
      "A1BG      ...    11.048915     6.432920    4.895026  152.673836   57.916281   \n",
      "A1BG-AS1  ...    15.102019     8.124654    9.748983   22.763570   13.154513   \n",
      "A1CF      ...  4122.816498  4534.454489  609.147122  862.557757  709.461012   \n",
      "A2M       ...   162.091288   153.870047  142.185765  168.487475  223.531843   \n",
      "A2M-AS1   ...    56.846255    62.474780   29.885526  265.306989   98.838131   \n",
      "\n",
      "          GSM5243881   GSM5243882   GSM5243883  GSM5243884  GSM5243885  \n",
      "Gene                                                                    \n",
      "A1BG      120.050563    73.365358     2.113031   41.790723   23.842575  \n",
      "A1BG-AS1   10.089153   126.689486     5.354573    6.207188    4.940293  \n",
      "A1CF      505.929431  5760.558573  4233.161054  188.188680  128.923380  \n",
      "A2M        97.507943   305.550971   238.681936  226.748801   72.531452  \n",
      "A2M-AS1    66.334940   105.798793    58.951741  237.566572   70.327629  \n",
      "\n",
      "[5 rows x 49 columns]\n",
      "Number of unique genes after mapping: 21278\n"
     ]
    }
   ],
   "source": [
    "# Looking at the annotation data from the previous step, we can see:\n",
    "# 'ID' column contains probe IDs like '1007_s_at' which match the gene expression data indices\n",
    "# 'Gene Symbol' column contains the gene symbols we need for mapping\n",
    "\n",
    "# 1. Identify the columns for mapping\n",
    "probe_id_column = 'ID'\n",
    "gene_symbol_column = 'Gene Symbol'\n",
    "\n",
    "print(f\"Will map from {probe_id_column} to {gene_symbol_column}\")\n",
    "\n",
    "# 2. Get a gene mapping dataframe\n",
    "mapping_df = get_gene_mapping(gene_annotation, probe_id_column, gene_symbol_column)\n",
    "print(f\"Gene mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few genes and their expression values:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Check the number of unique genes after mapping\n",
    "print(f\"Number of unique genes after mapping: {len(gene_data.index.unique())}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9e8363b3",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "7d043830",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:02:35.761394Z",
     "iopub.status.busy": "2025-03-25T04:02:35.761278Z",
     "iopub.status.idle": "2025-03-25T04:02:42.559022Z",
     "shell.execute_reply": "2025-03-25T04:02:42.558542Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data shape: (19845, 49)\n",
      "First few normalized gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1', 'A4GALT', 'A4GNT', 'AA06']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Stomach_Cancer/gene_data/GSE172197.csv\n",
      "Clinical data saved to ../../output/preprocess/Stomach_Cancer/clinical_data/GSE172197.csv\n",
      "Linked data shape: (49, 19846)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (49, 19846)\n",
      "All samples are gastric cancer cell lines without controls, marking trait as biased.\n",
      "Data quality check result: Not usable\n",
      "Data quality check failed. The dataset contains only gastric cancer samples without controls, making it unsuitable for association studies.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "print(f\"First few normalized gene symbols: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Create a minimal clinical DataFrame with sample IDs\n",
    "# We don't have trait data as determined in Step 2, but we still need to follow the process\n",
    "sample_ids = normalized_gene_data.columns\n",
    "clinical_features = pd.DataFrame(index=sample_ids)\n",
    "\n",
    "# Add placeholder for trait column (all labeled as 1 since all samples are gastric cancer)\n",
    "clinical_features[trait] = 1  # All samples are gastric cancer cell lines\n",
    "\n",
    "# Save the clinical data even though it's minimal\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Link the clinical and genetic data (even though clinical data is minimal)\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features.T, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 3. Handle missing values\n",
    "# Since all our samples are cancer cell lines with the same trait value (1),\n",
    "# and we don't have age/gender data, we can just check for missing values in gene data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 4. Determine whether the trait is biased\n",
    "# Since all samples are cancer cell lines (no controls), the trait is completely biased\n",
    "is_trait_biased = True\n",
    "print(\"All samples are gastric cancer cell lines without controls, marking trait as biased.\")\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True,  \n",
    "    is_trait_available=True,  # We have trait data (all cancer), though it's biased\n",
    "    is_biased=is_trait_biased, \n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains gene expression data from gastric cancer cell lines but lacks control samples for comparison.\"\n",
    ")\n",
    "\n",
    "# 6. We've determined the data is not usable for association studies due to biased trait\n",
    "print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n",
    "if is_usable:\n",
    "    # This block likely won't execute but included for completeness\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Data quality check failed. The dataset contains only gastric cancer samples without controls, making it unsuitable for association studies.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}