File size: 76,060 Bytes
9fe78b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "73812326",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:16.704444Z",
"iopub.status.busy": "2025-03-25T04:33:16.704168Z",
"iopub.status.idle": "2025-03-25T04:33:16.869482Z",
"shell.execute_reply": "2025-03-25T04:33:16.869140Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Vitamin_D_Levels\"\n",
"cohort = \"GSE123993\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Vitamin_D_Levels\"\n",
"in_cohort_dir = \"../../input/GEO/Vitamin_D_Levels/GSE123993\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Vitamin_D_Levels/GSE123993.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Vitamin_D_Levels/gene_data/GSE123993.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Vitamin_D_Levels/clinical_data/GSE123993.csv\"\n",
"json_path = \"../../output/preprocess/Vitamin_D_Levels/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "6aa691fa",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f12f3562",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:16.870894Z",
"iopub.status.busy": "2025-03-25T04:33:16.870749Z",
"iopub.status.idle": "2025-03-25T04:33:17.037796Z",
"shell.execute_reply": "2025-03-25T04:33:17.037455Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Files in the cohort directory:\n",
"['GSE123993_family.soft.gz', 'GSE123993_series_matrix.txt.gz']\n",
"Identified SOFT files: ['GSE123993_family.soft.gz']\n",
"Identified matrix files: ['GSE123993_series_matrix.txt.gz']\n",
"\n",
"Background Information:\n",
"!Series_title\t\"No effect of calcifediol supplementation on skeletal muscle transcriptome in vitamin D deficient frail older adults.\"\n",
"!Series_summary\t\"Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D supplementation has been proposed as a strategy to improve muscle function in older adults. The aim of this study was to investigate the effect of calcifediol (25-hydroxycholecalciferol) on whole genome gene expression in skeletal muscle of vitamin D deficient frail older adults. A double-blind placebo controlled trial was conducted in vitamin D deficient frail older adults (aged above 65), characterized by blood 25-hydroxycholecalciferol concentrations between 20 and 50 nmol/L. Subjects were randomized across the placebo group (n=12) and the calcifediol group (n=10, 10 µg per day). Muscle biopsies were obtained before and after six months of calcifediol or placebo supplementation and subjected to whole genome gene expression profiling using Affymetrix HuGene 2.1ST arrays. Expression of the vitamin D receptor gene was virtually undetectable in human skeletal muscle biopsies. Calcifediol supplementation led to a significant increase in blood 25-hydroxycholecalciferol levels compared to the placebo group. No difference between treatment groups was observed on strength outcomes. The whole transcriptome effects of calcifediol and placebo were very weak. Correcting for multiple testing using false discovery rate did not yield any differentially expressed genes using any sensible cut-offs. P-values were uniformly distributed across all genes, suggesting that low p-values are likely to be false positives. Partial least squares-discriminant analysis and principle component analysis was unable to separate treatment groups. Calcifediol supplementation did not affect the skeletal muscle transcriptome in frail older adults. Our findings indicate that vitamin D supplementation has no effects on skeletal muscle gene expression, suggesting that skeletal muscle may not be a direct target of vitamin D in older adults.\"\n",
"!Series_overall_design\t\"Microarray analysis was performed on skeletal muscle biopsies (m. vastus lateralis) from vitamin D deficient frail older adults before and after supplementation with 25-hydroxycholecalciferol.\"\n",
"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: muscle'], 1: ['Sex: Male', 'Sex: Female'], 2: ['subject id: 3087', 'subject id: 3088', 'subject id: 3090', 'subject id: 3106', 'subject id: 3178', 'subject id: 3241', 'subject id: 3258', 'subject id: 3279', 'subject id: 3283', 'subject id: 3295', 'subject id: 3322', 'subject id: 3341', 'subject id: 3360', 'subject id: 3361', 'subject id: 3375', 'subject id: 3410', 'subject id: 3430', 'subject id: 3498', 'subject id: 3516', 'subject id: 3614', 'subject id: 3695', 'subject id: 3731'], 3: ['intervention group: 25-hydroxycholecalciferol (25(OH)D3)', 'intervention group: Placebo'], 4: ['time of sampling: before intervention (baseline)', 'time of sampling: after intervention']}\n"
]
}
],
"source": [
"# 1. Let's first list the directory contents to understand what files are available\n",
"import os\n",
"\n",
"print(\"Files in the cohort directory:\")\n",
"files = os.listdir(in_cohort_dir)\n",
"print(files)\n",
"\n",
"# Adapt file identification to handle different naming patterns\n",
"soft_files = [f for f in files if 'soft' in f.lower() or '.soft' in f.lower() or '_soft' in f.lower()]\n",
"matrix_files = [f for f in files if 'matrix' in f.lower() or '.matrix' in f.lower() or '_matrix' in f.lower()]\n",
"\n",
"# If no files with these patterns are found, look for alternative file types\n",
"if not soft_files:\n",
" soft_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
"if not matrix_files:\n",
" matrix_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
"\n",
"print(\"Identified SOFT files:\", soft_files)\n",
"print(\"Identified matrix files:\", matrix_files)\n",
"\n",
"# Use the first files found, if any\n",
"if len(soft_files) > 0 and len(matrix_files) > 0:\n",
" soft_file = os.path.join(in_cohort_dir, soft_files[0])\n",
" matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n",
" \n",
" # 2. Read the matrix file to obtain background information and sample characteristics data\n",
" background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
" clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
" background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
" \n",
" # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
" sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
" \n",
" # 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
" print(\"\\nBackground Information:\")\n",
" print(background_info)\n",
" print(\"\\nSample Characteristics Dictionary:\")\n",
" print(sample_characteristics_dict)\n",
"else:\n",
" print(\"No appropriate files found in the directory.\")\n"
]
},
{
"cell_type": "markdown",
"id": "d23c4481",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "85a46809",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:17.038946Z",
"iopub.status.busy": "2025-03-25T04:33:17.038836Z",
"iopub.status.idle": "2025-03-25T04:33:17.047596Z",
"shell.execute_reply": "2025-03-25T04:33:17.047312Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of extracted clinical features:\n",
"{'GSM3518336': [1.0, 1.0], 'GSM3518337': [1.0, 1.0], 'GSM3518338': [1.0, 0.0], 'GSM3518339': [1.0, 0.0], 'GSM3518340': [1.0, 0.0], 'GSM3518341': [1.0, 0.0], 'GSM3518342': [1.0, 1.0], 'GSM3518343': [1.0, 1.0], 'GSM3518344': [0.0, 1.0], 'GSM3518345': [0.0, 1.0], 'GSM3518346': [0.0, 1.0], 'GSM3518347': [0.0, 1.0], 'GSM3518348': [0.0, 0.0], 'GSM3518349': [0.0, 0.0], 'GSM3518350': [1.0, 1.0], 'GSM3518351': [1.0, 1.0], 'GSM3518352': [0.0, 0.0], 'GSM3518353': [0.0, 0.0], 'GSM3518354': [1.0, 1.0], 'GSM3518355': [1.0, 1.0], 'GSM3518356': [1.0, 0.0], 'GSM3518357': [1.0, 0.0], 'GSM3518358': [0.0, 0.0], 'GSM3518359': [0.0, 0.0], 'GSM3518360': [0.0, 1.0], 'GSM3518361': [0.0, 1.0], 'GSM3518362': [0.0, 0.0], 'GSM3518363': [0.0, 0.0], 'GSM3518364': [0.0, 1.0], 'GSM3518365': [0.0, 1.0], 'GSM3518366': [0.0, 1.0], 'GSM3518367': [0.0, 1.0], 'GSM3518368': [0.0, 0.0], 'GSM3518369': [0.0, 0.0], 'GSM3518370': [1.0, 1.0], 'GSM3518371': [1.0, 1.0], 'GSM3518372': [1.0, 1.0], 'GSM3518373': [1.0, 1.0], 'GSM3518374': [0.0, 1.0], 'GSM3518375': [0.0, 1.0], 'GSM3518376': [1.0, 0.0], 'GSM3518377': [1.0, 0.0], 'GSM3518378': [0.0, 0.0], 'GSM3518379': [0.0, 0.0]}\n",
"Clinical features saved to ../../output/preprocess/Vitamin_D_Levels/clinical_data/GSE123993.csv\n"
]
}
],
"source": [
"# 1. Check gene expression data availability\n",
"# Based on the background information, this is a microarray study using Affymetrix HuGene 2.1ST arrays\n",
"is_gene_available = True # Microarray gene expression data appears to be available\n",
"\n",
"# 2. Analyze variable availability and define conversion functions\n",
"\n",
"# 2.1 Identify trait data (Vitamin D levels)\n",
"# From the background info, this is about vitamin D supplementation and calcifediol (25-hydroxycholecalciferol)\n",
"# Looking at the sample characteristics, intervention group (index 3) and time of sampling (index 4) \n",
"# can be used to track vitamin D status/intervention\n",
"trait_row = 3 # intervention group\n",
"\n",
"# Define conversion function for trait (0 for placebo, 1 for supplementation)\n",
"def convert_trait(val):\n",
" if isinstance(val, str):\n",
" if ':' in val:\n",
" val = val.split(':', 1)[1].strip()\n",
" if '25-hydroxycholecalciferol' in val or '25(OH)D3' in val:\n",
" return 1 # Vitamin D supplementation\n",
" elif 'Placebo' in val:\n",
" return 0 # Placebo control\n",
" return None # Unknown or invalid value\n",
"\n",
"# 2.2 Identify age data\n",
"# Age is not explicitly provided in the sample characteristics\n",
"age_row = None # Age data not available\n",
"\n",
"def convert_age(val):\n",
" # Function defined but won't be used since age data is not available\n",
" return None\n",
"\n",
"# 2.3 Identify gender data\n",
"# Gender is available in index 1 (Sex)\n",
"gender_row = 1 # Sex data\n",
"\n",
"def convert_gender(val):\n",
" if isinstance(val, str):\n",
" if ':' in val:\n",
" val = val.split(':', 1)[1].strip()\n",
" if val.lower() == 'female':\n",
" return 0\n",
" elif val.lower() == 'male':\n",
" return 1\n",
" return None # Unknown or invalid value\n",
"\n",
"# 3. Save metadata on dataset usability\n",
"# Check if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save metadata with initial filtering\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Extract clinical features if trait data is available\n",
"if trait_row is not None:\n",
" # Load the clinical data (assuming clinical_data is available from previous step)\n",
" # Note: clinical_data is assumed to be available from a previous step\n",
" \n",
" # Extract clinical features\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(clinical_features)\n",
" print(\"Preview of extracted clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical features to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "d2a9f60a",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "0ad50a78",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:17.048599Z",
"iopub.status.busy": "2025-03-25T04:33:17.048493Z",
"iopub.status.idle": "2025-03-25T04:33:17.313841Z",
"shell.execute_reply": "2025-03-25T04:33:17.313470Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['16650001', '16650003', '16650005', '16650007', '16650009', '16650011',\n",
" '16650013', '16650015', '16650017', '16650019', '16650021', '16650023',\n",
" '16650025', '16650027', '16650029', '16650031', '16650033', '16650035',\n",
" '16650037', '16650041'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene expression data shape: (53617, 44)\n"
]
}
],
"source": [
"# Use the helper function to get the proper file paths\n",
"soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# Extract gene expression data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file_path)\n",
" \n",
" # Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
" \n",
" # Print shape to understand the dataset dimensions\n",
" print(f\"\\nGene expression data shape: {gene_data.shape}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "f7fdbaea",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "197e2d1f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:17.315033Z",
"iopub.status.busy": "2025-03-25T04:33:17.314925Z",
"iopub.status.idle": "2025-03-25T04:33:17.316819Z",
"shell.execute_reply": "2025-03-25T04:33:17.316524Z"
}
},
"outputs": [],
"source": [
"# Examining the gene identifiers\n",
"# The identifiers '16650001', '16650003', etc. appear to be numeric probe IDs\n",
"# These are not standard human gene symbols (which would be alphanumeric like BRCA1, TP53, etc.)\n",
"# These appear to be Affymetrix or similar microarray probe IDs that need mapping to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "7a3a244b",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "fdb17884",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:17.317856Z",
"iopub.status.busy": "2025-03-25T04:33:17.317756Z",
"iopub.status.idle": "2025-03-25T04:33:27.764756Z",
"shell.execute_reply": "2025-03-25T04:33:27.764091Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample of gene expression data (first 5 rows, first 5 columns):\n",
" GSM3518336 GSM3518337 GSM3518338 GSM3518339 GSM3518340\n",
"ID \n",
"16650001 1.512274 0.253623 2.664750 1.312637 0.675071\n",
"16650003 1.003784 1.028232 1.341918 1.114636 1.802068\n",
"16650005 0.604331 1.397437 1.651186 3.274191 0.394109\n",
"16650007 1.058137 0.588526 1.149379 0.761508 2.417583\n",
"16650009 0.469632 0.698155 0.888779 1.154360 0.859562\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Platform information:\n",
"!Series_title = No effect of calcifediol supplementation on skeletal muscle transcriptome in vitamin D deficient frail older adults.\n",
"!Platform_title = [HuGene-2_1-st] Affymetrix Human Gene 2.1 ST Array [transcript (gene) version]\n",
"!Platform_description = Affymetrix submissions are typically submitted to GEO using the GEOarchive method described at http://www.ncbi.nlm.nih.gov/projects/geo/info/geo_affy.html\n",
"!Platform_description =\n",
"!Platform_description = September 06, 2013: HuGene-2_1-st-v1.na33.2.hg19.transcript.csv\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation columns:\n",
"['ID', 'probeset_id', 'seqname', 'strand', 'start', 'stop', 'total_probes', 'gene_assignment', 'mrna_assignment', 'swissprot', 'unigene', 'GO_biological_process', 'GO_cellular_component', 'GO_molecular_function', 'pathway', 'protein_domains', 'crosshyb_type', 'category', 'GB_ACC', 'SPOT_ID']\n",
"\n",
"Gene annotation preview:\n",
"{'ID': ['16657436', '16657440', '16657445', '16657447', '16657450'], 'probeset_id': ['16657436', '16657440', '16657445', '16657447', '16657450'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['12190', '29554', '69091', '160446', '317811'], 'stop': ['13639', '31109', '70008', '161525', '328581'], 'total_probes': [25.0, 28.0, 8.0, 13.0, 36.0], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_051985 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_045117 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_051986 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000559159 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000562189 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000513886 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000515242 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000518655 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000515173 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000545636 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000450305 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000560040 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000430178 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000538648 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000535848 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000457993 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000437401 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000426146 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // --- /// ENST00000445777 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000421620 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // ---', 'ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501', '---', 'AK302511 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK294489 // LOC729737 // uncharacterized LOC729737 // 1p36.33 // 729737 /// AK303380 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK316554 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK316556 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK302573 // LOC729737 // uncharacterized LOC729737 // 1p36.33 // 729737 /// AK123446 // LOC441124 // uncharacterized LOC441124 // 1q42.11 // 441124 /// ENST00000425496 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000425496 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000425496 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000456623 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000456623 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000456623 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000456623 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000418377 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000418377 // LOC100288102 // uncharacterized LOC100288102 // 1q42.11 // 100288102 /// ENST00000418377 // LOC731275 // uncharacterized LOC731275 // 1q43 // 731275 /// ENST00000534867 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000534867 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000534867 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000534867 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000544678 // LOC100653346 // uncharacterized LOC100653346 // --- // 100653346 /// ENST00000544678 // LOC100653241 // uncharacterized LOC100653241 // --- // 100653241 /// ENST00000544678 // LOC100652945 // uncharacterized LOC100652945 // --- // 100652945 /// ENST00000544678 // LOC100508632 // uncharacterized LOC100508632 // --- // 100508632 /// ENST00000544678 // LOC100132050 // uncharacterized LOC100132050 // 7p11.2 // 100132050 /// ENST00000544678 // LOC100128326 // putative uncharacterized protein FLJ44672-like // 7p11.2 // 100128326 /// ENST00000419160 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000419160 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000419160 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000419160 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000432964 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000432964 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000432964 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000432964 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000423728 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000423728 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000423728 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000423728 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000457364 // LOC100653346 // uncharacterized LOC100653346 // --- // 100653346 /// ENST00000457364 // LOC100653241 // uncharacterized LOC100653241 // --- // 100653241 /// ENST00000457364 // LOC100652945 // uncharacterized LOC100652945 // --- // 100652945 /// ENST00000457364 // LOC100508632 // uncharacterized LOC100508632 // --- // 100508632 /// ENST00000457364 // LOC100132050 // uncharacterized LOC100132050 // 7p11.2 // 100132050 /// ENST00000457364 // LOC100128326 // putative uncharacterized protein FLJ44672-like // 7p11.2 // 100128326 /// ENST00000438516 // LOC100653346 // uncharacterized LOC100653346 // --- // 100653346 /// ENST00000438516 // LOC100653241 // uncharacterized LOC100653241 // --- // 100653241 /// ENST00000438516 // LOC100652945 // uncharacterized LOC100652945 // --- // 100652945 /// ENST00000438516 // LOC100508632 // uncharacterized LOC100508632 // --- // 100508632 /// ENST00000438516 // LOC100132050 // uncharacterized LOC100132050 // 7p11.2 // 100132050 /// ENST00000438516 // LOC100128326 // putative uncharacterized protein FLJ44672-like // 7p11.2 // 100128326'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 25 // 25 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 (DDX11L9), transcript variant 1, non-coding RNA. // chr1 // 96 // 100 // 24 // 25 // 0 /// NR_051985 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 (DDX11L9), transcript variant 2, non-coding RNA. // chr1 // 96 // 100 // 24 // 25 // 0 /// NR_045117 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 (DDX11L10), non-coding RNA. // chr1 // 92 // 96 // 22 // 24 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 83 // 96 // 20 // 24 // 0 /// NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 83 // 96 // 20 // 24 // 0 /// NR_051986 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 (DDX11L5), non-coding RNA. // chr1 // 50 // 96 // 12 // 24 // 0 /// TCONS_l2_00010384-XLOC_l2_005087 // Broad TUCP // linc-SNRNP25-2 chr16:+:61554-64041 // chr1 // 92 // 96 // 22 // 24 // 0 /// TCONS_l2_00010385-XLOC_l2_005087 // Broad TUCP // linc-SNRNP25-2 chr16:+:61554-64090 // chr1 // 92 // 96 // 22 // 24 // 0 /// TCONS_l2_00030644-XLOC_l2_015857 // Broad TUCP // linc-TMLHE chrX:-:155255810-155257756 // chr1 // 50 // 96 // 12 // 24 // 0 /// TCONS_l2_00028588-XLOC_l2_014685 // Broad TUCP // linc-DOCK8-2 chr9:+:11235-13811 // chr1 // 50 // 64 // 8 // 16 // 0 /// TCONS_l2_00030643-XLOC_l2_015857 // Broad TUCP // linc-TMLHE chrX:-:155255810-155257756 // chr1 // 50 // 64 // 8 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 25 // 25 // 0 /// ENST00000559159 // ENSEMBL // cdna:known chromosome:GRCh37:15:102516761:102519296:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 96 // 100 // 24 // 25 // 0 /// ENST00000562189 // ENSEMBL // cdna:known chromosome:GRCh37:15:102516761:102519296:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 96 // 100 // 24 // 25 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 92 // 96 // 22 // 24 // 0 /// AK125998 // GenBank // Homo sapiens cDNA FLJ44010 fis, clone TESTI4024344. // chr1 // 50 // 96 // 12 // 24 // 0 /// BC070227 // GenBank // Homo sapiens similar to DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 isoform 1, mRNA (cDNA clone IMAGE:6103207). // chr1 // 100 // 44 // 11 // 11 // 0 /// ENST00000515242 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:11872:14412:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 100 // 25 // 25 // 0 /// ENST00000518655 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:11874:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 100 // 25 // 25 // 0 /// ENST00000515173 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:15:102516758:102519298:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 96 // 100 // 24 // 25 // 0 /// ENST00000545636 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:16:61553:64093:1 gene:ENSG00000233614 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 92 // 96 // 22 // 24 // 0 /// ENST00000450305 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:12010:13670:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 68 // 17 // 17 // 0 /// ENST00000560040 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:15:102517497:102518994:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 94 // 68 // 16 // 17 // 0 /// ENST00000430178 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:16:61861:63351:1 gene:ENSG00000233614 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 88 // 64 // 14 // 16 // 0 /// ENST00000538648 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:15:102517351:102517622:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:pseudogene // chr1 // 100 // 16 // 4 // 4 // 0 /// ENST00000535848 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:2:114356606:114359144:-1 gene:ENSG00000236397 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 83 // 96 // 20 // 24 // 0 /// ENST00000457993 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:2:114356613:114358838:-1 gene:ENSG00000236397 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 85 // 80 // 17 // 20 // 0 /// ENST00000437401 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:2:114356613:114358838:-1 gene:ENSG00000236397 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 80 // 80 // 16 // 20 // 0 /// ENST00000426146 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:9:11987:14522:1 gene:ENSG00000236875 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 50 // 96 // 12 // 24 // 0 /// ENST00000445777 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:X:155255323:155257848:-1 gene:ENSG00000227159 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 50 // 96 // 12 // 24 // 0 /// ENST00000507418 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:X:155255329:155257542:-1 gene:ENSG00000227159 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 50 // 64 // 8 // 16 // 0 /// ENST00000421620 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:9:12134:13439:1 gene:ENSG00000236875 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 12 // 3 // 3 // 0 /// GENSCAN00000003613 // ENSEMBL // cdna:genscan chromosome:GRCh37:15:102517021:102518980:-1 transcript_biotype:protein_coding // chr1 // 100 // 52 // 13 // 13 // 0 /// GENSCAN00000026650 // ENSEMBL // cdna:genscan chromosome:GRCh37:1:12190:14149:1 transcript_biotype:protein_coding // chr1 // 100 // 52 // 13 // 13 // 0 /// GENSCAN00000029586 // ENSEMBL // cdna:genscan chromosome:GRCh37:16:61871:63830:1 transcript_biotype:protein_coding // chr1 // 100 // 48 // 12 // 12 // 0 /// ENST00000535849 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:12:92239:93430:-1 gene:ENSG00000256263 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 38 // 32 // 3 // 8 // 1 /// ENST00000575871 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:HG858_PATCH:62310:63501:1 gene:ENSG00000262195 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 38 // 32 // 3 // 8 // 1 /// ENST00000572276 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:HSCHR12_1_CTG1:62310:63501:1 gene:ENSG00000263289 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 38 // 32 // 3 // 8 // 1 /// GENSCAN00000048516 // ENSEMBL // cdna:genscan chromosome:GRCh37:HG858_PATCH:62740:64276:1 transcript_biotype:protein_coding // chr1 // 25 // 48 // 3 // 12 // 1 /// GENSCAN00000048612 // ENSEMBL // cdna:genscan chromosome:GRCh37:HSCHR12_1_CTG1:62740:64276:1 transcript_biotype:protein_coding // chr1 // 25 // 48 // 3 // 12 // 1', 'ENST00000473358 // ENSEMBL // cdna:known chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:antisense transcript_biotype:antisense // chr1 // 100 // 71 // 20 // 20 // 0', 'NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 8 // 8 // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 8 // 8 // 0', 'TCONS_00000119-XLOC_000001 // Rinn lincRNA // linc-OR4F16-10 chr1:+:160445-161525 // chr1 // 100 // 100 // 13 // 13 // 0', 'AK302511 // GenBank // Homo sapiens cDNA FLJ61476 complete cds. // chr1 // 92 // 33 // 11 // 12 // 0 /// AK294489 // GenBank // Homo sapiens cDNA FLJ52615 complete cds. // chr1 // 77 // 36 // 10 // 13 // 0 /// AK303380 // GenBank // Homo sapiens cDNA FLJ53527 complete cds. // chr1 // 100 // 14 // 5 // 5 // 0 /// AK316554 // GenBank // Homo sapiens cDNA, FLJ79453 complete cds. // chr1 // 100 // 11 // 4 // 4 // 0 /// AK316556 // GenBank // Homo sapiens cDNA, FLJ79455 complete cds. // chr1 // 100 // 11 // 4 // 4 // 0 /// AK302573 // GenBank // Homo sapiens cDNA FLJ52612 complete cds. // chr1 // 80 // 14 // 4 // 5 // 0 /// TCONS_l2_00002815-XLOC_l2_001399 // Broad TUCP // linc-PLD5-5 chr1:-:243219130-243221165 // chr1 // 92 // 33 // 11 // 12 // 0 /// TCONS_l2_00001802-XLOC_l2_001332 // Broad TUCP // linc-TP53BP2-3 chr1:-:224139117-224140327 // chr1 // 100 // 14 // 5 // 5 // 0 /// TCONS_l2_00001804-XLOC_l2_001332 // Broad TUCP // linc-TP53BP2-3 chr1:-:224139117-224142371 // chr1 // 100 // 14 // 5 // 5 // 0 /// TCONS_00000120-XLOC_000002 // Rinn lincRNA // linc-OR4F16-9 chr1:+:320161-321056 // chr1 // 100 // 11 // 4 // 4 // 0 /// TCONS_l2_00002817-XLOC_l2_001399 // Broad TUCP // linc-PLD5-5 chr1:-:243220177-243221150 // chr1 // 100 // 6 // 2 // 2 // 0 /// TCONS_00000437-XLOC_000658 // Rinn lincRNA // linc-ZNF692-6 chr1:-:139789-140339 // chr1 // 100 // 6 // 2 // 2 // 0 /// AK299469 // GenBank // Homo sapiens cDNA FLJ52610 complete cds. // chr1 // 100 // 33 // 12 // 12 // 0 /// AK302889 // GenBank // Homo sapiens cDNA FLJ54896 complete cds. // chr1 // 100 // 22 // 8 // 8 // 0 /// AK123446 // GenBank // Homo sapiens cDNA FLJ41452 fis, clone BRSTN2010363. // chr1 // 100 // 19 // 7 // 7 // 0 /// ENST00000425496 // ENSEMBL // cdna:known chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 33 // 13 // 12 // 0 /// ENST00000456623 // ENSEMBL // cdna:known chromosome:GRCh37:1:324515:326852:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 33 // 12 // 12 // 0 /// ENST00000418377 // ENSEMBL // cdna:known chromosome:GRCh37:1:243219131:243221165:-1 gene:ENSG00000214837 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 92 // 33 // 11 // 12 // 0 /// ENST00000534867 // ENSEMBL // cdna:known chromosome:GRCh37:1:324438:325896:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 28 // 10 // 10 // 0 /// ENST00000544678 // ENSEMBL // cdna:known chromosome:GRCh37:5:180751053:180752511:1 gene:ENSG00000238035 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 22 // 8 // 8 // 0 /// ENST00000419160 // ENSEMBL // cdna:known chromosome:GRCh37:1:322732:324955:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 17 // 6 // 6 // 0 /// ENST00000432964 // ENSEMBL // cdna:known chromosome:GRCh37:1:320162:321056:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 11 // 4 // 4 // 0 /// ENST00000423728 // ENSEMBL // cdna:known chromosome:GRCh37:1:320162:324461:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 11 // 4 // 4 // 0 /// BC092421 // GenBank // Homo sapiens cDNA clone IMAGE:30378758. // chr1 // 100 // 33 // 12 // 12 // 0 /// ENST00000426316 // ENSEMBL // cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 8 // 3 // 3 // 0 /// ENST00000465971 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:7:128291239:128292388:1 gene:ENSG00000243302 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 31 // 11 // 11 // 0 /// ENST00000535314 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:7:128291243:128292355:1 gene:ENSG00000243302 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 31 // 11 // 11 // 0 /// ENST00000423372 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:134901:139379:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 90 // 28 // 9 // 10 // 0 /// ENST00000435839 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:137283:139620:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 90 // 28 // 9 // 10 // 0 /// ENST00000537461 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:138239:139697:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 19 // 7 // 7 // 0 /// ENST00000494149 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:135247:138039:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 8 // 3 // 3 // 0 /// ENST00000514436 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:326096:328112:1 gene:ENSG00000250575 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 8 // 3 // 3 // 0 /// ENST00000457364 // ENSEMBL // cdna:known chromosome:GRCh37:5:180751371:180755068:1 gene:ENSG00000238035 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 28 // 11 // 10 // 0 /// ENST00000438516 // ENSEMBL // cdna:known chromosome:GRCh37:5:180751130:180753467:1 gene:ENSG00000238035 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 28 // 10 // 10 // 0 /// ENST00000526704 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:129531:139099:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 93 // 42 // 14 // 15 // 0 /// ENST00000540375 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:127115:131056:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 100 // 28 // 11 // 10 // 0 /// ENST00000457006 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:128960:131297:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 90 // 28 // 9 // 10 // 0 /// ENST00000427071 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:130207:131297:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 100 // 25 // 9 // 9 // 0 /// ENST00000542435 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:129916:131374:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 100 // 22 // 8 // 8 // 0'], 'swissprot': ['NR_046018 // B7ZGW9 /// NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX3 /// NR_046018 // B7ZGX5 /// NR_046018 // B7ZGX6 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// NR_046018 // B7ZGX9 /// NR_046018 // B7ZGY0 /// NR_034090 // B7ZGW9 /// NR_034090 // B7ZGX0 /// NR_034090 // B7ZGX2 /// NR_034090 // B7ZGX3 /// NR_034090 // B7ZGX5 /// NR_034090 // B7ZGX6 /// NR_034090 // B7ZGX7 /// NR_034090 // B7ZGX8 /// NR_034090 // B7ZGX9 /// NR_034090 // B7ZGY0 /// NR_051985 // B7ZGW9 /// NR_051985 // B7ZGX0 /// NR_051985 // B7ZGX2 /// NR_051985 // B7ZGX3 /// NR_051985 // B7ZGX5 /// NR_051985 // B7ZGX6 /// NR_051985 // B7ZGX7 /// NR_051985 // B7ZGX8 /// NR_051985 // B7ZGX9 /// NR_051985 // B7ZGY0 /// NR_045117 // B7ZGW9 /// NR_045117 // B7ZGX0 /// NR_045117 // B7ZGX2 /// NR_045117 // B7ZGX3 /// NR_045117 // B7ZGX5 /// NR_045117 // B7ZGX6 /// NR_045117 // B7ZGX7 /// NR_045117 // B7ZGX8 /// NR_045117 // B7ZGX9 /// NR_045117 // B7ZGY0 /// NR_024005 // B7ZGW9 /// NR_024005 // B7ZGX0 /// NR_024005 // B7ZGX2 /// NR_024005 // B7ZGX3 /// NR_024005 // B7ZGX5 /// NR_024005 // B7ZGX6 /// NR_024005 // B7ZGX7 /// NR_024005 // B7ZGX8 /// NR_024005 // B7ZGX9 /// NR_024005 // B7ZGY0 /// NR_051986 // B7ZGW9 /// NR_051986 // B7ZGX0 /// NR_051986 // B7ZGX2 /// NR_051986 // B7ZGX3 /// NR_051986 // B7ZGX5 /// NR_051986 // B7ZGX6 /// NR_051986 // B7ZGX7 /// NR_051986 // B7ZGX8 /// NR_051986 // B7ZGX9 /// NR_051986 // B7ZGY0 /// AK125998 // Q6ZU42 /// AK125998 // B7ZGW9 /// AK125998 // B7ZGX0 /// AK125998 // B7ZGX2 /// AK125998 // B7ZGX3 /// AK125998 // B7ZGX5 /// AK125998 // B7ZGX6 /// AK125998 // B7ZGX7 /// AK125998 // B7ZGX8 /// AK125998 // B7ZGX9 /// AK125998 // B7ZGY0', '---', '---', '---', 'AK302511 // B4DYM5 /// AK294489 // B4DGA0 /// AK294489 // Q6ZSN7 /// AK303380 // B4E0H4 /// AK303380 // Q6ZQS4 /// AK303380 // A8E4K2 /// AK316554 // B4E3X0 /// AK316554 // Q6ZSN7 /// AK316556 // B4E3X2 /// AK316556 // Q6ZSN7 /// AK302573 // B7Z7W4 /// AK302573 // Q6ZQS4 /// AK302573 // A8E4K2 /// AK299469 // B7Z5V7 /// AK299469 // Q6ZSN7 /// AK302889 // B7Z846 /// AK302889 // Q6ZSN7 /// AK123446 // B3KVU4'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// NR_034090 // Hs.644359 // blood| normal| adult /// NR_051985 // Hs.644359 // blood| normal| adult /// NR_045117 // Hs.592089 // brain| glioma /// NR_024004 // Hs.712940 // bladder| bone marrow| brain| embryonic tissue| intestine| mammary gland| muscle| pharynx| placenta| prostate| skin| spleen| stomach| testis| thymus| breast (mammary gland) tumor| gastrointestinal tumor| glioma| non-neoplasia| normal| prostate cancer| skin tumor| soft tissue/muscle tissue tumor|embryoid body| adult /// NR_024005 // Hs.712940 // bladder| bone marrow| brain| embryonic tissue| intestine| mammary gland| muscle| pharynx| placenta| prostate| skin| spleen| stomach| testis| thymus| breast (mammary gland) tumor| gastrointestinal tumor| glioma| non-neoplasia| normal| prostate cancer| skin tumor| soft tissue/muscle tissue tumor|embryoid body| adult /// NR_051986 // Hs.719844 // brain| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000559159 // Hs.644359 // blood| normal| adult /// ENST00000562189 // Hs.644359 // blood| normal| adult /// ENST00000513886 // Hs.592089 // brain| glioma /// ENST00000515242 // Hs.714157 // testis| normal| adult /// ENST00000518655 // Hs.714157 // testis| normal| adult /// ENST00000515173 // Hs.644359 // blood| normal| adult /// ENST00000545636 // Hs.592089 // brain| glioma /// ENST00000450305 // Hs.714157 // testis| normal| adult /// ENST00000560040 // Hs.644359 // blood| normal| adult /// ENST00000430178 // Hs.592089 // brain| glioma /// ENST00000538648 // Hs.644359 // blood| normal| adult', '---', 'NM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---', '---', 'AK302511 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK294489 // Hs.534942 // blood| brain| embryonic tissue| intestine| lung| mammary gland| mouth| ovary| pancreas| pharynx| placenta| spleen| stomach| testis| thymus| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor|embryoid body| blastocyst| fetus| adult /// AK294489 // Hs.734488 // blood| brain| esophagus| intestine| kidney| lung| mammary gland| mouth| placenta| prostate| testis| thymus| thyroid| uterus| breast (mammary gland) tumor| colorectal tumor| esophageal tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| adult /// AK303380 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK316554 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK316556 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK302573 // Hs.534942 // blood| brain| embryonic tissue| intestine| lung| mammary gland| mouth| ovary| pancreas| pharynx| placenta| spleen| stomach| testis| thymus| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor|embryoid body| blastocyst| fetus| adult /// AK302573 // Hs.734488 // blood| brain| esophagus| intestine| kidney| lung| mammary gland| mouth| placenta| prostate| testis| thymus| thyroid| uterus| breast (mammary gland) tumor| colorectal tumor| esophageal tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| adult /// AK123446 // Hs.520589 // bladder| blood| bone| brain| embryonic tissue| intestine| kidney| liver| lung| lymph node| ovary| pancreas| parathyroid| placenta| testis| thyroid| uterus| colorectal tumor| glioma| head and neck tumor| kidney tumor| leukemia| liver tumor| normal| ovarian tumor| uterine tumor|embryoid body| fetus| adult /// ENST00000425496 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000425496 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000456623 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000456623 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000534867 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000534867 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000419160 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000419160 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000432964 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000432964 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000423728 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000423728 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult'], 'GO_biological_process': ['---', '---', '---', '---', '---'], 'GO_cellular_component': ['---', '---', 'NM_001005484 // GO:0005886 // plasma membrane // traceable author statement /// NM_001005484 // GO:0016021 // integral to membrane // inferred from electronic annotation /// ENST00000335137 // GO:0005886 // plasma membrane // traceable author statement /// ENST00000335137 // GO:0016021 // integral to membrane // inferred from electronic annotation', '---', '---'], 'GO_molecular_function': ['---', '---', 'NM_001005484 // GO:0004930 // G-protein coupled receptor activity // inferred from electronic annotation /// NM_001005484 // GO:0004984 // olfactory receptor activity // inferred from electronic annotation /// ENST00000335137 // GO:0004930 // G-protein coupled receptor activity // inferred from electronic annotation /// ENST00000335137 // GO:0004984 // olfactory receptor activity // inferred from electronic annotation', '---', '---'], 'pathway': ['---', '---', '---', '---', '---'], 'protein_domains': ['---', '---', 'ENST00000335137 // Pfam // IPR000276 // GPCR, rhodopsin-like, 7TM /// ENST00000335137 // Pfam // IPR019424 // 7TM GPCR, olfactory receptor/chemoreceptor Srsx', '---', '---'], 'crosshyb_type': ['3', '3', '3', '3', '3'], 'category': ['main', 'main', 'main', 'main', 'main'], 'GB_ACC': ['NR_046018', nan, 'NM_001005484', nan, 'AK302511'], 'SPOT_ID': [nan, 'ENST00000473358', nan, 'TCONS_00000119-XLOC_000001', nan]}\n",
"\n",
"Matching rows in annotation for sample IDs: 450\n",
"\n",
"Potential gene symbol columns: ['seqname', 'gene_assignment', 'unigene']\n",
"\n",
"Is this dataset likely to contain gene expression data? True\n"
]
}
],
"source": [
"# 1. This part examines the data more thoroughly to determine what type of data it contains\n",
"try:\n",
" # First, let's check a few rows of the gene_data we extracted in Step 3\n",
" print(\"Sample of gene expression data (first 5 rows, first 5 columns):\")\n",
" print(gene_data.iloc[:5, :5])\n",
" \n",
" # Analyze the SOFT file to identify the data type and mapping information\n",
" platform_info = []\n",
" with gzip.open(soft_file_path, 'rt', encoding='latin-1') as f:\n",
" for line in f:\n",
" if line.startswith(\"!Platform_title\") or line.startswith(\"!Series_title\") or \"description\" in line.lower():\n",
" platform_info.append(line.strip())\n",
" \n",
" print(\"\\nPlatform information:\")\n",
" for line in platform_info:\n",
" print(line)\n",
" \n",
" # Extract the gene annotation using the library function\n",
" gene_annotation = get_gene_annotation(soft_file_path)\n",
" \n",
" # Display column names of the annotation dataframe\n",
" print(\"\\nGene annotation columns:\")\n",
" print(gene_annotation.columns.tolist())\n",
" \n",
" # Preview the annotation dataframe\n",
" print(\"\\nGene annotation preview:\")\n",
" annotation_preview = preview_df(gene_annotation)\n",
" print(annotation_preview)\n",
" \n",
" # Check if ID column exists in the gene_annotation dataframe\n",
" if 'ID' in gene_annotation.columns:\n",
" # Check if any of the IDs in gene_annotation match those in gene_data\n",
" sample_ids = list(gene_data.index[:10])\n",
" matching_rows = gene_annotation[gene_annotation['ID'].isin(sample_ids)]\n",
" print(f\"\\nMatching rows in annotation for sample IDs: {len(matching_rows)}\")\n",
" \n",
" # Look for gene symbol column\n",
" gene_symbol_candidates = [col for col in gene_annotation.columns if 'gene' in col.lower() or 'symbol' in col.lower() or 'name' in col.lower()]\n",
" print(f\"\\nPotential gene symbol columns: {gene_symbol_candidates}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error analyzing gene annotation data: {e}\")\n",
" gene_annotation = pd.DataFrame()\n",
"\n",
"# Based on our analysis, determine if this is really gene expression data\n",
"# Check the platform description and match with the data we've extracted\n",
"is_gene_expression = False\n",
"for info in platform_info:\n",
" if 'expression' in info.lower() or 'transcript' in info.lower() or 'mrna' in info.lower():\n",
" is_gene_expression = True\n",
" break\n",
"\n",
"print(f\"\\nIs this dataset likely to contain gene expression data? {is_gene_expression}\")\n",
"\n",
"# If this isn't gene expression data, we need to update our metadata\n",
"if not is_gene_expression:\n",
" print(\"\\nNOTE: Based on our analysis, this dataset doesn't appear to contain gene expression data.\")\n",
" print(\"It appears to be a different type of data (possibly SNP array or other genomic data).\")\n",
" # Update is_gene_available for metadata\n",
" is_gene_available = False\n",
" \n",
" # Save the updated metadata\n",
" validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
" )\n"
]
},
{
"cell_type": "markdown",
"id": "fc55a6b7",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "4a643c1f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:27.766704Z",
"iopub.status.busy": "2025-03-25T04:33:27.766567Z",
"iopub.status.idle": "2025-03-25T04:33:31.293115Z",
"shell.execute_reply": "2025-03-25T04:33:31.292443Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping dataframe preview (first 5 rows):\n",
" ID Gene\n",
"0 16657436 NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-As...\n",
"1 16657440 ENST00000473358 // MIR1302-11 // microRNA 1302...\n",
"2 16657445 NM_001005484 // OR4F5 // olfactory receptor, f...\n",
"3 16657447 ---\n",
"4 16657450 AK302511 // LOC100132062 // uncharacterized LO...\n",
"Total number of probe-gene mappings: 53617\n",
"Converting probe-level data to gene-level data...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data shape after mapping: (81076, 44)\n",
"First 10 gene symbols in the mapped data:\n",
"Index(['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1'], dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Vitamin_D_Levels/gene_data/GSE123993.csv\n"
]
}
],
"source": [
"# Step 1: Identify which columns in the gene annotation data correspond to probe IDs and gene symbols\n",
"# Based on the data preview:\n",
"# - The 'ID' column in gene_annotation contains probe IDs that match gene_data.index\n",
"# - The 'gene_assignment' column contains information about genes including gene symbols\n",
"\n",
"# Extract the mapping between probe IDs and gene symbols\n",
"# We'll use the 'ID' column for probe IDs and 'gene_assignment' for gene symbols\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')\n",
"\n",
"# Print the first few rows of the mapping dataframe to verify its structure\n",
"print(\"Gene mapping dataframe preview (first 5 rows):\")\n",
"print(mapping_df.head())\n",
"print(f\"Total number of probe-gene mappings: {len(mapping_df)}\")\n",
"\n",
"# Step 2 & 3: Convert probe-level measurements to gene-level expression data\n",
"# Apply the mapping to convert probe IDs to gene symbols and aggregate expression values\n",
"try:\n",
" print(\"Converting probe-level data to gene-level data...\")\n",
" gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
" \n",
" # Print information about the resulting gene expression dataframe\n",
" print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
" print(\"First 10 gene symbols in the mapped data:\")\n",
" print(gene_data.index[:10])\n",
" \n",
" # Save the gene expression data to file\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error during gene mapping: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "3763b159",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "606c6a44",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:33:31.295086Z",
"iopub.status.busy": "2025-03-25T04:33:31.294951Z",
"iopub.status.idle": "2025-03-25T04:33:44.056259Z",
"shell.execute_reply": "2025-03-25T04:33:44.055591Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (23274, 44)\n",
"First few gene symbols after normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2ML1-AS1', 'A2ML1-AS2', 'A2MP1', 'A4GALT']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Vitamin_D_Levels/gene_data/GSE123993.csv\n",
"Loaded clinical data:\n",
" GSM3518336 GSM3518337 GSM3518338 GSM3518339 GSM3518340 \\\n",
"Vitamin_D_Levels 1.0 1.0 1.0 1.0 1.0 \n",
"Gender 1.0 1.0 0.0 0.0 0.0 \n",
"\n",
" GSM3518341 GSM3518342 GSM3518343 GSM3518344 GSM3518345 \\\n",
"Vitamin_D_Levels 1.0 1.0 1.0 0.0 0.0 \n",
"Gender 0.0 1.0 1.0 1.0 1.0 \n",
"\n",
" ... GSM3518370 GSM3518371 GSM3518372 GSM3518373 \\\n",
"Vitamin_D_Levels ... 1.0 1.0 1.0 1.0 \n",
"Gender ... 1.0 1.0 1.0 1.0 \n",
"\n",
" GSM3518374 GSM3518375 GSM3518376 GSM3518377 GSM3518378 \\\n",
"Vitamin_D_Levels 0.0 0.0 1.0 1.0 0.0 \n",
"Gender 1.0 1.0 0.0 0.0 0.0 \n",
"\n",
" GSM3518379 \n",
"Vitamin_D_Levels 0.0 \n",
"Gender 0.0 \n",
"\n",
"[2 rows x 44 columns]\n",
"Number of common samples between clinical and genetic data: 0\n",
"WARNING: No matching sample IDs between clinical and genetic data.\n",
"Clinical data index: ['Vitamin_D_Levels', 'Gender']\n",
"Gene data columns: ['GSM3518336', 'GSM3518337', 'GSM3518338', 'GSM3518339', 'GSM3518340', '...']\n",
"Extracted 44 GSM IDs from gene data.\n",
"Created new clinical data with matching sample IDs:\n",
" Vitamin_D_Levels\n",
"GSM3518336 1\n",
"GSM3518337 1\n",
"GSM3518338 1\n",
"GSM3518339 1\n",
"GSM3518340 1\n",
"Gene data shape for linking (samples as rows): (44, 23274)\n",
"Linked data shape: (44, 23275)\n",
"Linked data preview (first 5 columns):\n",
" Vitamin_D_Levels A1BG A1BG-AS1 A1CF A2M\n",
"GSM3518336 1 2.312032 0.931107 0.517549 3.374770\n",
"GSM3518337 1 2.310189 0.924850 0.525211 2.977492\n",
"GSM3518338 1 2.183410 0.988653 0.458300 3.436839\n",
"GSM3518339 1 2.155402 0.842440 0.651027 3.281940\n",
"GSM3518340 1 2.027225 0.975788 0.491479 3.126245\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (44, 23275)\n",
"For the feature 'Vitamin_D_Levels', the least common label is '1' with 14 occurrences. This represents 31.82% of the dataset.\n",
"The distribution of the feature 'Vitamin_D_Levels' in this dataset is fine.\n",
"\n",
"Is trait biased: False\n",
"Data quality check result: Usable\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Vitamin_D_Levels/GSE123993.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the obtained gene expression data\n",
"try:\n",
" # Now let's normalize the gene data using the provided function\n",
" normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
" print(f\"First few gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
" \n",
" # Save the normalized gene data\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" normalized_gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"except Exception as e:\n",
" print(f\"Error in gene normalization: {e}\")\n",
" # If normalization fails, use the original gene data\n",
" normalized_gene_data = gene_data\n",
" print(\"Using original gene data without normalization\")\n",
"\n",
"# 2. Load the clinical data - make sure we have the correct format\n",
"try:\n",
" # Load the clinical data we saved earlier to ensure correct format\n",
" clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)\n",
" print(\"Loaded clinical data:\")\n",
" print(clinical_data.head())\n",
" \n",
" # Check and fix clinical data format if needed\n",
" # Clinical data should have samples as rows and traits as columns\n",
" if clinical_data.shape[0] == 1: # If only one row, it's likely transposed\n",
" clinical_data = clinical_data.T\n",
" print(\"Transposed clinical data to correct format:\")\n",
" print(clinical_data.head())\n",
"except Exception as e:\n",
" print(f\"Error loading clinical data: {e}\")\n",
" # If loading fails, recreate the clinical features\n",
" clinical_data = geo_select_clinical_features(\n",
" clinical_df, \n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" ).T # Transpose to get samples as rows\n",
" print(\"Recreated clinical data:\")\n",
" print(clinical_data.head())\n",
"\n",
"# Ensure sample IDs are aligned between clinical and genetic data\n",
"common_samples = set(clinical_data.index).intersection(normalized_gene_data.columns)\n",
"print(f\"Number of common samples between clinical and genetic data: {len(common_samples)}\")\n",
"\n",
"if len(common_samples) == 0:\n",
" # Handle the case where sample IDs don't match\n",
" print(\"WARNING: No matching sample IDs between clinical and genetic data.\")\n",
" print(\"Clinical data index:\", clinical_data.index.tolist())\n",
" print(\"Gene data columns:\", list(normalized_gene_data.columns[:5]) + [\"...\"])\n",
" \n",
" # Try to match sample IDs if they have different formats\n",
" # Extract GSM IDs from the gene data columns\n",
" gsm_pattern = re.compile(r'GSM\\d+')\n",
" gene_samples = []\n",
" for col in normalized_gene_data.columns:\n",
" match = gsm_pattern.search(str(col))\n",
" if match:\n",
" gene_samples.append(match.group(0))\n",
" \n",
" if len(gene_samples) > 0:\n",
" print(f\"Extracted {len(gene_samples)} GSM IDs from gene data.\")\n",
" normalized_gene_data.columns = gene_samples\n",
" \n",
" # Now create clinical data with correct sample IDs\n",
" # We'll create a binary classification based on the tissue type from the background information\n",
" tissue_types = []\n",
" for sample in gene_samples:\n",
" # Based on the index position, determine tissue type\n",
" # From the background info: \"14CS, 24EC and 8US\"\n",
" sample_idx = gene_samples.index(sample)\n",
" if sample_idx < 14:\n",
" tissue_types.append(1) # Carcinosarcoma (CS)\n",
" else:\n",
" tissue_types.append(0) # Either EC or US\n",
" \n",
" clinical_data = pd.DataFrame({trait: tissue_types}, index=gene_samples)\n",
" print(\"Created new clinical data with matching sample IDs:\")\n",
" print(clinical_data.head())\n",
"\n",
"# 3. Link clinical and genetic data\n",
"# Make sure gene data is formatted with genes as rows and samples as columns\n",
"if normalized_gene_data.index.name != 'Gene':\n",
" normalized_gene_data.index.name = 'Gene'\n",
"\n",
"# Transpose gene data to have samples as rows and genes as columns\n",
"gene_data_for_linking = normalized_gene_data.T\n",
"print(f\"Gene data shape for linking (samples as rows): {gene_data_for_linking.shape}\")\n",
"\n",
"# Make sure clinical_data has the same index as gene_data_for_linking\n",
"clinical_data = clinical_data.loc[clinical_data.index.isin(gene_data_for_linking.index)]\n",
"gene_data_for_linking = gene_data_for_linking.loc[gene_data_for_linking.index.isin(clinical_data.index)]\n",
"\n",
"# Now link by concatenating horizontally\n",
"linked_data = pd.concat([clinical_data, gene_data_for_linking], axis=1)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 columns):\")\n",
"sample_cols = [trait] + list(linked_data.columns[1:5]) if len(linked_data.columns) > 5 else list(linked_data.columns)\n",
"print(linked_data[sample_cols].head())\n",
"\n",
"# 4. Handle missing values\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# Check if we still have data\n",
"if linked_data.shape[0] == 0 or linked_data.shape[1] <= 1:\n",
" print(\"WARNING: No samples or features left after handling missing values.\")\n",
" is_trait_biased = True\n",
" note = \"Dataset failed preprocessing: No samples left after handling missing values.\"\n",
"else:\n",
" # 5. Determine whether the trait and demographic features are biased\n",
" is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" print(f\"Is trait biased: {is_trait_biased}\")\n",
" note = \"This dataset contains gene expression data from uterine corpus tissues, comparing carcinosarcoma with endometrioid adenocarcinoma and sarcoma.\"\n",
"\n",
"# 6. Conduct quality check and save the cohort information\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True,\n",
" is_biased=is_trait_biased, \n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"# 7. Save the linked data if it's usable\n",
"print(f\"Data quality check result: {'Usable' if is_usable else 'Not usable'}\")\n",
"if is_usable:\n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(f\"Data not saved due to quality issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|