File size: 18,494 Bytes
9fe78b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "8927c3e9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:43:53.864295Z",
"iopub.status.busy": "2025-03-25T04:43:53.864193Z",
"iopub.status.idle": "2025-03-25T04:43:54.023869Z",
"shell.execute_reply": "2025-03-25T04:43:54.023528Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Vitamin_D_Levels\"\n",
"cohort = \"GSE33544\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Vitamin_D_Levels\"\n",
"in_cohort_dir = \"../../input/GEO/Vitamin_D_Levels/GSE33544\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Vitamin_D_Levels/GSE33544.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Vitamin_D_Levels/gene_data/GSE33544.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Vitamin_D_Levels/clinical_data/GSE33544.csv\"\n",
"json_path = \"../../output/preprocess/Vitamin_D_Levels/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "92ae2f55",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "f2cd48bc",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:43:54.025270Z",
"iopub.status.busy": "2025-03-25T04:43:54.025123Z",
"iopub.status.idle": "2025-03-25T04:43:54.053925Z",
"shell.execute_reply": "2025-03-25T04:43:54.053633Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Files in the cohort directory:\n",
"['GSE33544_family.soft.gz', 'GSE33544_series_matrix.txt.gz']\n",
"Identified SOFT files: ['GSE33544_family.soft.gz']\n",
"Identified matrix files: ['GSE33544_series_matrix.txt.gz']\n",
"\n",
"Background Information:\n",
"!Series_title\t\"Human B cell receptor light chain repertoire analysis in healthy individuals and SLE patients\"\n",
"!Series_summary\t\"Determination of expression levels of light chain V genes in peripheral blood B cells after FACS sorting for two populations of B cells (CD20+CD138-IgKappa+IgLambda- and CD20+CD138-IgKappa-IgLambda+). Analysis was performed on healthy individuals and SLE patients with analysis performed using several models.\"\n",
"!Series_overall_design\t\"Dual channel hybridization with experimental samples detected on red channel and reference sample detected on green channel. Two replicate hybridizations.\"\n",
"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease state: Healthy', 'disease state: SLE', 'disease state: N/A'], 1: ['individual: Healthy01', 'individual: Healthy02', 'individual: Healthy03', 'individual: Healthy04', 'individual: Healthy05', 'individual: Healthy06', 'individual: Healthy07', 'individual: Healthy08', 'individual: Healthy09', 'individual: Healthy10', 'individual: SLE01', 'individual: SLE02', 'individual: SLE03', 'individual: SLE04', 'individual: SLE05', 'individual: SLE06', 'individual: SLE07', 'individual: SLE08', 'individual: SLE09', 'individual: SLE10', 'sample type: Standard 1, Reference sample with reverse complement of B3 spiked in a 5.3% and 2-13 spiked in at 26%', 'sample type: Standard 2, Reference sample withreverse complement of B3 spiked in at 10.8% and 2-13 spiked in at 10.8%', 'sample type: Standard 3, Reference sample with reverse complement of B3 spiked in at 26.0% and 2-13 spiked in at 5.2%', 'sample type: Standard 4, Reference sample with reverse complement of O2/O12 spiked in at 2.2% and 1-19 spiked in at 11.1%', 'sample type: Standard 5, Reference sample with reverse complement of O2/O12 spiked in at 4.7% and 1-19 at 4.7%'], 2: ['cell type: FACS sorted peripheral blood B cells with the CD20+CD138-IgKappa+IgLambda- phenotype', 'cell type: FACS sorted peripheral blood B cells with the CD20+CD138-IgKappa-IgLambda+ phenotype', nan]}\n"
]
}
],
"source": [
"# 1. Let's first list the directory contents to understand what files are available\n",
"import os\n",
"\n",
"print(\"Files in the cohort directory:\")\n",
"files = os.listdir(in_cohort_dir)\n",
"print(files)\n",
"\n",
"# Adapt file identification to handle different naming patterns\n",
"soft_files = [f for f in files if 'soft' in f.lower() or '.soft' in f.lower() or '_soft' in f.lower()]\n",
"matrix_files = [f for f in files if 'matrix' in f.lower() or '.matrix' in f.lower() or '_matrix' in f.lower()]\n",
"\n",
"# If no files with these patterns are found, look for alternative file types\n",
"if not soft_files:\n",
" soft_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
"if not matrix_files:\n",
" matrix_files = [f for f in files if f.endswith('.txt') or f.endswith('.gz')]\n",
"\n",
"print(\"Identified SOFT files:\", soft_files)\n",
"print(\"Identified matrix files:\", matrix_files)\n",
"\n",
"# Use the first files found, if any\n",
"if len(soft_files) > 0 and len(matrix_files) > 0:\n",
" soft_file = os.path.join(in_cohort_dir, soft_files[0])\n",
" matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n",
" \n",
" # 2. Read the matrix file to obtain background information and sample characteristics data\n",
" background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
" clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
" background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
" \n",
" # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
" sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
" \n",
" # 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
" print(\"\\nBackground Information:\")\n",
" print(background_info)\n",
" print(\"\\nSample Characteristics Dictionary:\")\n",
" print(sample_characteristics_dict)\n",
"else:\n",
" print(\"No appropriate files found in the directory.\")\n"
]
},
{
"cell_type": "markdown",
"id": "b7c4ee79",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "4c5a0f28",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:43:54.054953Z",
"iopub.status.busy": "2025-03-25T04:43:54.054849Z",
"iopub.status.idle": "2025-03-25T04:43:54.059455Z",
"shell.execute_reply": "2025-03-25T04:43:54.059182Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the series title and summary, this dataset appears to contain gene expression data for\n",
"# B cell receptor light chain V genes, which makes it suitable for our analysis\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"\n",
"# 2.1 Data Availability\n",
"# For trait (Vitamin D Levels), there is no explicit measurement in the data\n",
"# The dataset focuses on B cell receptor light chain in healthy individuals and SLE patients\n",
"# It does not contain data on Vitamin D levels\n",
"trait_row = None\n",
"\n",
"# For age, there is no information available in the sample characteristics\n",
"age_row = None\n",
"\n",
"# For gender, there is no information available in the sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"# Since the trait is not available, we'll define a placeholder conversion function\n",
"def convert_trait(val):\n",
" # Not used because trait data is not available, but defined for completeness\n",
" return None\n",
"\n",
"def convert_age(val):\n",
" # Not used because age data is not available, but defined for completeness\n",
" return None\n",
"\n",
"def convert_gender(val):\n",
" # Not used because gender data is not available, but defined for completeness\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Conduct initial filtering on the usability of the dataset\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# We skip this step since trait_row is None, indicating that clinical data relevant to our trait is not available\n"
]
},
{
"cell_type": "markdown",
"id": "e6fa0e8b",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "eefda092",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:43:54.060437Z",
"iopub.status.busy": "2025-03-25T04:43:54.060336Z",
"iopub.status.idle": "2025-03-25T04:43:54.075041Z",
"shell.execute_reply": "2025-03-25T04:43:54.074716Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
" '14', '15', '16', '17', '18', '19', '20'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene expression data shape: (702, 90)\n"
]
}
],
"source": [
"# Use the helper function to get the proper file paths\n",
"soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# Extract gene expression data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file_path)\n",
" \n",
" # Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
" \n",
" # Print shape to understand the dataset dimensions\n",
" print(f\"\\nGene expression data shape: {gene_data.shape}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "fd0ea077",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4f510ebb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:43:54.076089Z",
"iopub.status.busy": "2025-03-25T04:43:54.075973Z",
"iopub.status.idle": "2025-03-25T04:43:54.077741Z",
"shell.execute_reply": "2025-03-25T04:43:54.077442Z"
}
},
"outputs": [],
"source": [
"# The identifiers in this dataset appear to be simple numeric values (1, 2, 3, etc.)\n",
"# rather than standard human gene symbols or common probe identifiers.\n",
"# These are likely to be row indices or some proprietary/custom identifiers\n",
"# that would need to be mapped to standard gene symbols.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "67cda6e5",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "f291f512",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T04:43:54.078738Z",
"iopub.status.busy": "2025-03-25T04:43:54.078632Z",
"iopub.status.idle": "2025-03-25T04:43:54.178761Z",
"shell.execute_reply": "2025-03-25T04:43:54.178445Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sample of gene expression data (first 5 rows, first 5 columns):\n",
" GSM829558 GSM829559 GSM829560 GSM829561 GSM829562\n",
"ID \n",
"1 8.6110 7.5734 7.8586 7.0651 7.0482\n",
"2 8.8956 7.9014 7.7024 7.6270 7.2680\n",
"3 8.1202 8.5356 8.1926 7.6255 6.6475\n",
"4 7.7357 9.0515 6.9298 7.7770 6.8019\n",
"5 8.0023 9.1398 6.9036 7.9086 7.1469\n",
"\n",
"Platform information:\n",
"!Series_title = Human B cell receptor light chain repertoire analysis in healthy individuals and SLE patients\n",
"!Platform_title = University of Chicago Weigert Light Chain\n",
"\n",
"Gene annotation columns:\n",
"['ID', 'ORF', 'Light Chain', 'SPOT_ID', 'SEQUENCE']\n",
"\n",
"Gene annotation preview:\n",
"{'ID': ['1', '2', '3', '4', '5'], 'ORF': ['A1', 'A1', 'A1', 'A1', 'A1'], 'Light Chain': [\"'A1'\", \"'A1'\", \"'A1'\", \"'A1'\", \"'A1'\"], 'SPOT_ID': [nan, nan, nan, nan, nan], 'SEQUENCE': ['AGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTAACTGGGACTCTGGGGTCCCAGACAGATTCAGC', 'AGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTAACTGGGACTCTGGGGTCCCAGACAGATTCAGC', 'AGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTAACTGGGACTCTGGGGTCCCAGACAGATTCAGC', 'AGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTAACTGGGACTCTGGGGTCCCAGACAGATTCAGC', 'AGGCCAATCTCCAAGGCGCCTAATTTATAAGGTTTCTAACTGGGACTCTGGGGTCCCAGACAGATTCAGC']}\n",
"\n",
"Matching rows in annotation for sample IDs: 910\n",
"\n",
"Potential gene symbol columns: []\n",
"\n",
"Is this dataset likely to contain gene expression data? False\n",
"\n",
"NOTE: Based on our analysis, this dataset doesn't appear to contain gene expression data.\n",
"It appears to be a different type of data (possibly SNP array or other genomic data).\n"
]
}
],
"source": [
"# 1. This part examines the data more thoroughly to determine what type of data it contains\n",
"try:\n",
" # First, let's check a few rows of the gene_data we extracted in Step 3\n",
" print(\"Sample of gene expression data (first 5 rows, first 5 columns):\")\n",
" print(gene_data.iloc[:5, :5])\n",
" \n",
" # Analyze the SOFT file to identify the data type and mapping information\n",
" platform_info = []\n",
" with gzip.open(soft_file_path, 'rt', encoding='latin-1') as f:\n",
" for line in f:\n",
" if line.startswith(\"!Platform_title\") or line.startswith(\"!Series_title\") or \"description\" in line.lower():\n",
" platform_info.append(line.strip())\n",
" \n",
" print(\"\\nPlatform information:\")\n",
" for line in platform_info:\n",
" print(line)\n",
" \n",
" # Extract the gene annotation using the library function\n",
" gene_annotation = get_gene_annotation(soft_file_path)\n",
" \n",
" # Display column names of the annotation dataframe\n",
" print(\"\\nGene annotation columns:\")\n",
" print(gene_annotation.columns.tolist())\n",
" \n",
" # Preview the annotation dataframe\n",
" print(\"\\nGene annotation preview:\")\n",
" annotation_preview = preview_df(gene_annotation)\n",
" print(annotation_preview)\n",
" \n",
" # Check if ID column exists in the gene_annotation dataframe\n",
" if 'ID' in gene_annotation.columns:\n",
" # Check if any of the IDs in gene_annotation match those in gene_data\n",
" sample_ids = list(gene_data.index[:10])\n",
" matching_rows = gene_annotation[gene_annotation['ID'].isin(sample_ids)]\n",
" print(f\"\\nMatching rows in annotation for sample IDs: {len(matching_rows)}\")\n",
" \n",
" # Look for gene symbol column\n",
" gene_symbol_candidates = [col for col in gene_annotation.columns if 'gene' in col.lower() or 'symbol' in col.lower() or 'name' in col.lower()]\n",
" print(f\"\\nPotential gene symbol columns: {gene_symbol_candidates}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error analyzing gene annotation data: {e}\")\n",
" gene_annotation = pd.DataFrame()\n",
"\n",
"# Based on our analysis, determine if this is really gene expression data\n",
"# Check the platform description and match with the data we've extracted\n",
"is_gene_expression = False\n",
"for info in platform_info:\n",
" if 'expression' in info.lower() or 'transcript' in info.lower() or 'mrna' in info.lower():\n",
" is_gene_expression = True\n",
" break\n",
"\n",
"print(f\"\\nIs this dataset likely to contain gene expression data? {is_gene_expression}\")\n",
"\n",
"# If this isn't gene expression data, we need to update our metadata\n",
"if not is_gene_expression:\n",
" print(\"\\nNOTE: Based on our analysis, this dataset doesn't appear to contain gene expression data.\")\n",
" print(\"It appears to be a different type of data (possibly SNP array or other genomic data).\")\n",
" # Update is_gene_available for metadata\n",
" is_gene_available = False\n",
" \n",
" # Save the updated metadata\n",
" validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
" )"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|