File size: 6,805 Bytes
9fe78b4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "44353979",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:55:36.751525Z",
     "iopub.status.busy": "2025-03-25T04:55:36.751349Z",
     "iopub.status.idle": "2025-03-25T04:55:36.911928Z",
     "shell.execute_reply": "2025-03-25T04:55:36.911595Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Werner_Syndrome\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Werner_Syndrome/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Werner_Syndrome/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Werner_Syndrome/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Werner_Syndrome/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7879037c",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "6628b8b6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:55:36.913336Z",
     "iopub.status.busy": "2025-03-25T04:55:36.913197Z",
     "iopub.status.idle": "2025-03-25T04:55:36.918012Z",
     "shell.execute_reply": "2025-03-25T04:55:36.917723Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available TCGA directories: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
      "Potential relevant directories for Werner_Syndrome: []\n",
      "No directory specifically relevant to the trait: Werner_Syndrome\n",
      "Task marked as completed. Werner_Syndrome is not directly represented in the TCGA dataset.\n"
     ]
    }
   ],
   "source": [
    "# Step 1: Review subdirectories to find one related to Werner Syndrome\n",
    "import os\n",
    "\n",
    "# List all directories in TCGA root directory\n",
    "tcga_dirs = os.listdir(tcga_root_dir)\n",
    "print(f\"Available TCGA directories: {tcga_dirs}\")\n",
    "\n",
    "# Look for directories related to Werner Syndrome\n",
    "relevant_dirs = []\n",
    "for dir_name in tcga_dirs:\n",
    "    dir_lower = dir_name.lower()\n",
    "    if \"werner\" in dir_lower or \"syndrome\" in dir_lower or \"progeria\" in dir_lower:\n",
    "        relevant_dirs.append(dir_name)\n",
    "\n",
    "print(f\"Potential relevant directories for {trait}: {relevant_dirs}\")\n",
    "\n",
    "# Since TCGA is primarily a cancer genomics database, it's unlikely to have a specific\n",
    "# directory for Werner Syndrome. We should check the clinical data columns of datasets\n",
    "# to see if any contain information relevant to Werner Syndrome.\n",
    "\n",
    "if not relevant_dirs:\n",
    "    print(f\"No directory specifically relevant to the trait: {trait}\")\n",
    "    \n",
    "    # Since Werner Syndrome is a rare genetic disorder and TCGA focuses on cancer genomics,\n",
    "    # it's unlikely that this data exists in this database format\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=\"TCGA\",\n",
    "        info_path=json_path,\n",
    "        is_gene_available=False,\n",
    "        is_trait_available=False\n",
    "    )\n",
    "    print(f\"Task marked as completed. {trait} is not directly represented in the TCGA dataset.\")\n",
    "else:\n",
    "    # If by chance we did find a relevant directory, proceed with loading the data\n",
    "    selected_dir = relevant_dirs[0]\n",
    "    print(f\"Selected directory for {trait}: {selected_dir}\")\n",
    "    \n",
    "    # Get the full path to the directory\n",
    "    cohort_dir = os.path.join(tcga_root_dir, selected_dir)\n",
    "    \n",
    "    # Step 2: Find clinical and genetic data files\n",
    "    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    \n",
    "    print(f\"Clinical data file: {clinical_file_path}\")\n",
    "    print(f\"Genetic data file: {genetic_file_path}\")\n",
    "    \n",
    "    # Step 3: Load the data files\n",
    "    clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\\t')\n",
    "    genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\\t')\n",
    "    \n",
    "    # Step 4: Print column names of clinical data\n",
    "    print(\"\\nClinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n",
    "    \n",
    "    # Check if both datasets are available\n",
    "    is_gene_available = not genetic_df.empty\n",
    "    is_trait_available = not clinical_df.empty\n",
    "    \n",
    "    # Initial validation\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=\"TCGA\",\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available\n",
    "    )"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}