File size: 41,957 Bytes
58f02a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e2dc6ba7",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:47.122656Z",
     "iopub.status.busy": "2025-03-25T06:20:47.122481Z",
     "iopub.status.idle": "2025-03-25T06:20:47.292795Z",
     "shell.execute_reply": "2025-03-25T06:20:47.292471Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Adrenocortical_Cancer\"\n",
    "cohort = \"GSE108088\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Adrenocortical_Cancer\"\n",
    "in_cohort_dir = \"../../input/GEO/Adrenocortical_Cancer/GSE108088\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Adrenocortical_Cancer/GSE108088.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Adrenocortical_Cancer/clinical_data/GSE108088.csv\"\n",
    "json_path = \"../../output/preprocess/Adrenocortical_Cancer/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f04fb895",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e5138cca",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:47.294225Z",
     "iopub.status.busy": "2025-03-25T06:20:47.294072Z",
     "iopub.status.idle": "2025-03-25T06:20:47.478727Z",
     "shell.execute_reply": "2025-03-25T06:20:47.478415Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Comprehensive molecular profiling of children with recurrent cancer II\"\n",
      "!Series_summary\t\"to explore possible treatment targets and reasons for agressive children cacners by comprehensive molecular profiling on several platforms\"\n",
      "!Series_summary\t\"to explore copy number aberrations related to cancers\"\n",
      "!Series_overall_design\t\"diagnostics of children meeting the oncologist with recurrent or agressive cancers where treatment options have been exhausted\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['condition: Atypical meningioma', 'condition: Choroid plexus carcinoma / Malignant peripheral nerve sheeth tumor', 'condition: Pilocytisc/pilomyxoid astrocytoma', 'condition: Pleomorphic xanthoastrocytoma', 'condition: Mesoblastisc nephroma', 'condition: Signetringcell carcinoma', 'condition: Ganglioglioma / Diffuse astrocytoma', 'condition: Chondrosarkoma', 'condition: Chordoma, dedefferentiated/anaplatic type (INI1-loss)', 'condition: Hepatoblastoma', 'condition: Diffuse midline glioma H3K27M-mutated', 'condition: Anaplastisc ependymoma', 'condition: Juvenile xanthogranuloma', 'condition: Anaplastisc pleomorfic xanthoastrocytoma / Glioblastoma', 'condition: Alveolar rhabdomyosarcoma', 'condition: Precursor T-lymphoblastic lymphoma', 'condition: Glioblastoma', 'condition: Malignant peripheral nerve sheeth tumor', 'condition: Pilocytic astrocytoma', 'condition: Nephroblastoma', 'condition: Neuroblastoma', 'condition: Ganglioneuroblastoma', 'condition: Anaplastic ependymoma', 'condition: Gastrointestinal neuroectodermal tumour', 'condition: Atypical neurocytoma', 'condition: Chondroblastic osteosarcoma', 'condition: Enchodroms', 'condition: Pineoblastoma', 'condition: Osteochondroma', 'condition: Ewing sarcoma']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "738abb94",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "1dc1352f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:47.479987Z",
     "iopub.status.busy": "2025-03-25T06:20:47.479874Z",
     "iopub.status.idle": "2025-03-25T06:20:47.503663Z",
     "shell.execute_reply": "2025-03-25T06:20:47.503335Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of the clinical dataframe:\n",
      "{'GSM2889381': [0.0], 'GSM2889382': [0.0], 'GSM2889383': [0.0], 'GSM2889384': [0.0], 'GSM2889385': [0.0], 'GSM2889386': [0.0], 'GSM2889387': [0.0], 'GSM2889388': [0.0], 'GSM2889389': [0.0], 'GSM2889390': [0.0], 'GSM2889391': [0.0], 'GSM2889392': [0.0], 'GSM2889393': [0.0], 'GSM2889394': [0.0], 'GSM2889395': [0.0], 'GSM2889396': [0.0], 'GSM2889397': [0.0], 'GSM2889398': [0.0], 'GSM2889399': [0.0], 'GSM2889400': [0.0], 'GSM2889401': [0.0], 'GSM2889402': [0.0], 'GSM2889403': [0.0], 'GSM2889404': [0.0], 'GSM2889405': [0.0], 'GSM2889406': [0.0], 'GSM2889407': [0.0], 'GSM2889408': [0.0], 'GSM2889409': [0.0], 'GSM2889410': [0.0], 'GSM2889411': [0.0], 'GSM2889412': [0.0], 'GSM2889413': [0.0], 'GSM2889414': [0.0], 'GSM2889415': [0.0], 'GSM2889416': [0.0], 'GSM2889417': [0.0], 'GSM2889418': [0.0], 'GSM2889419': [0.0], 'GSM2889420': [0.0], 'GSM2889421': [0.0], 'GSM2889422': [0.0], 'GSM2889423': [0.0]}\n",
      "Clinical data saved to ../../output/preprocess/Adrenocortical_Cancer/clinical_data/GSE108088.csv\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "import json\n",
    "from typing import Callable, Optional, Dict, Any\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this appears to be a cancer dataset that likely includes gene expression data.\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Trait Data Availability\n",
    "# Row 0 contains condition information, which can be used for trait (cancer type)\n",
    "trait_row = 0\n",
    "\n",
    "# Age is not available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Gender is not available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert adrenocortical cancer status based on condition field.\"\"\"\n",
    "    if not value or not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # For adrenocortical cancer, we need to check if any of the conditions are related to adrenocortical cancer\n",
    "    # This dataset doesn't appear to have adrenocortical cancer explicitly, so we'll return 0 for all cases\n",
    "    return 0  # None of the conditions match adrenocortical cancer\n",
    "\n",
    "def convert_age(value):\n",
    "    # Age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Validate and save cohort information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Check if trait_row is not None to proceed with clinical feature extraction\n",
    "if trait_row is not None:\n",
    "    # Assuming clinical_data was loaded in a previous step\n",
    "    # If not, we need to load it\n",
    "    try:\n",
    "        clinical_data\n",
    "    except NameError:\n",
    "        # Load clinical data if not already loaded\n",
    "        clinical_data_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
    "        if os.path.exists(clinical_data_path):\n",
    "            clinical_data = pd.read_csv(clinical_data_path)\n",
    "        else:\n",
    "            raise FileNotFoundError(f\"Clinical data file not found at {clinical_data_path}\")\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of the clinical dataframe:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical dataframe to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7151b9c0",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "a5a4cfc9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:47.504943Z",
     "iopub.status.busy": "2025-03-25T06:20:47.504838Z",
     "iopub.status.idle": "2025-03-25T06:20:47.772946Z",
     "shell.execute_reply": "2025-03-25T06:20:47.772559Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First 20 gene/probe identifiers:\n",
      "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n",
      "       '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n",
      "       '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n",
      "       '1552263_at', '1552264_a_at', '1552266_at'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths again to access the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(\"First 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bee65e17",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "fb3e110e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:47.774762Z",
     "iopub.status.busy": "2025-03-25T06:20:47.774611Z",
     "iopub.status.idle": "2025-03-25T06:20:47.776729Z",
     "shell.execute_reply": "2025-03-25T06:20:47.776443Z"
    }
   },
   "outputs": [],
   "source": [
    "# These identifiers appear to be Affymetrix probe IDs (e.g., \"1007_s_at\", \"1053_at\"), not standard human gene symbols.\n",
    "# Affymetrix probe IDs need to be mapped to human gene symbols for proper gene-level analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "64fd9a55",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "1c458fda",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:47.778407Z",
     "iopub.status.busy": "2025-03-25T06:20:47.778299Z",
     "iopub.status.idle": "2025-03-25T06:20:52.123110Z",
     "shell.execute_reply": "2025-03-25T06:20:52.122708Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6e556ef2",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "0f23f2e2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:52.124892Z",
     "iopub.status.busy": "2025-03-25T06:20:52.124738Z",
     "iopub.status.idle": "2025-03-25T06:20:52.371769Z",
     "shell.execute_reply": "2025-03-25T06:20:52.371379Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of gene data after mapping to gene symbols:\n",
      "          GSM2889381  GSM2889382  GSM2889383  GSM2889384  GSM2889385  \\\n",
      "Gene                                                                   \n",
      "A1BG        5.523549    6.286303    4.722706    6.001011    4.748103   \n",
      "A1BG-AS1    5.312258    5.636363    4.377456    4.989505    4.427621   \n",
      "A1CF        7.206790    7.545095    7.565904    7.332128    8.544245   \n",
      "A2M        16.878920   12.468288   16.198479   15.144045   17.156246   \n",
      "A2M-AS1     6.784101    4.090659    5.154216    7.076977    6.310073   \n",
      "\n",
      "          GSM2889386  GSM2889387  GSM2889388  GSM2889389  GSM2889390  ...  \\\n",
      "Gene                                                                  ...   \n",
      "A1BG        5.784339    5.073090    5.322978    5.552850   10.028951  ...   \n",
      "A1BG-AS1    4.967411    6.596631    4.705341    4.475880    6.932284  ...   \n",
      "A1CF        8.336636    7.851718    8.380085    8.670368   19.276394  ...   \n",
      "A2M        14.821813   15.381740   15.770469   14.939509   18.861067  ...   \n",
      "A2M-AS1     5.152857    5.589711    4.979747    4.542321    5.548948  ...   \n",
      "\n",
      "          GSM2889414  GSM2889415  GSM2889416  GSM2889417  GSM2889418  \\\n",
      "Gene                                                                   \n",
      "A1BG        6.278403    6.272556    4.600967    4.657533    5.614995   \n",
      "A1BG-AS1    5.400511    5.276987    5.441775    4.602252    5.203488   \n",
      "A1CF        7.606632    8.712928   11.310189    7.957452    8.364214   \n",
      "A2M        14.390082   15.016768   12.431363   16.300128   16.173946   \n",
      "A2M-AS1     5.360263    6.652004    6.177088    7.062321    6.452616   \n",
      "\n",
      "          GSM2889419  GSM2889420  GSM2889421  GSM2889422  GSM2889423  \n",
      "Gene                                                                  \n",
      "A1BG        6.211944    5.638128    6.302610    5.382192    5.806563  \n",
      "A1BG-AS1    4.949106    4.697487    4.967411    4.467902    4.628504  \n",
      "A1CF        7.806119    7.713201    7.476488    7.391467    6.929914  \n",
      "A2M        15.082967   14.419688   14.938606   15.109722   13.823226  \n",
      "A2M-AS1     5.194912    5.040409    4.631870    4.431435    6.644617  \n",
      "\n",
      "[5 rows x 43 columns]\n"
     ]
    }
   ],
   "source": [
    "# 1. Based on the previews:\n",
    "# - In gene_data, the indices are Affymetrix probe IDs like \"1007_s_at\"\n",
    "# - In gene_annotation, 'ID' column contains probe IDs and 'Gene Symbol' column contains gene symbols\n",
    "\n",
    "# 2. Extract gene mapping data\n",
    "prob_col = 'ID'  # This column contains the probe identifiers\n",
    "gene_col = 'Gene Symbol'  # This column contains the gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level data to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Preview the gene expression data after mapping\n",
    "print(\"Preview of gene data after mapping to gene symbols:\")\n",
    "print(gene_data.head(5))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2afebc6d",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "b6ddf770",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:20:52.373511Z",
     "iopub.status.busy": "2025-03-25T06:20:52.373387Z",
     "iopub.status.idle": "2025-03-25T06:20:53.065437Z",
     "shell.execute_reply": "2025-03-25T06:20:53.065015Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: (19845, 43)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Adrenocortical_Cancer/gene_data/GSE108088.csv\n",
      "Loading clinical data...\n",
      "Clinical data shape: (1, 43)\n",
      "Clinical data columns: ['GSM2889381', 'GSM2889382', 'GSM2889383', 'GSM2889384', 'GSM2889385', 'GSM2889386', 'GSM2889387', 'GSM2889388', 'GSM2889389', 'GSM2889390', 'GSM2889391', 'GSM2889392', 'GSM2889393', 'GSM2889394', 'GSM2889395', 'GSM2889396', 'GSM2889397', 'GSM2889398', 'GSM2889399', 'GSM2889400', 'GSM2889401', 'GSM2889402', 'GSM2889403', 'GSM2889404', 'GSM2889405', 'GSM2889406', 'GSM2889407', 'GSM2889408', 'GSM2889409', 'GSM2889410', 'GSM2889411', 'GSM2889412', 'GSM2889413', 'GSM2889414', 'GSM2889415', 'GSM2889416', 'GSM2889417', 'GSM2889418', 'GSM2889419', 'GSM2889420', 'GSM2889421', 'GSM2889422', 'GSM2889423']\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (44, 19888)\n",
      "Data shape after handling missing values: (1, 43)\n",
      "Quartiles for 'Adrenocortical_Cancer':\n",
      "  25%: 0.0\n",
      "  50% (Median): 0.0\n",
      "  75%: 0.0\n",
      "Min: 0.0\n",
      "Max: 0.0\n",
      "The distribution of the feature 'Adrenocortical_Cancer' in this dataset is severely biased.\n",
      "\n",
      "Is trait biased? True\n",
      "A new JSON file was created at: ../../output/preprocess/Adrenocortical_Cancer/cohort_info.json\n",
      "Dataset usability: False\n",
      "Dataset is not usable for trait-gene association studies.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "try:\n",
    "    # Normalize gene symbols using the NCBI Gene database\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "    \n",
    "    # Save the normalized gene data\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error during gene normalization: {e}\")\n",
    "    # If normalization fails, use the original gene data\n",
    "    print(\"Using original gene expression data...\")\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Original gene expression data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data that we created in Step 2\n",
    "print(\"Loading clinical data...\")\n",
    "try:\n",
    "    clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "    # Check if the dataframe has an unnamed index column that should become the index\n",
    "    if 'Unnamed: 0' in clinical_df.columns:\n",
    "        clinical_df.set_index('Unnamed: 0', inplace=True)\n",
    "    print(f\"Clinical data shape: {clinical_df.shape}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error loading clinical data: {e}\")\n",
    "    # If there's an error, we'll try to recreate the clinical data\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    clinical_df = selected_clinical_df.T\n",
    "    print(f\"Recreation of clinical data, shape: {clinical_df.shape}\")\n",
    "\n",
    "# 3. Check the structure of the clinical data\n",
    "print(\"Clinical data columns:\", clinical_df.columns.tolist())\n",
    "\n",
    "# 4. Link the clinical and genetic data\n",
    "print(\"Linking clinical and genetic data...\")\n",
    "try:\n",
    "    # Make sure we have the trait column in the clinical_df\n",
    "    if trait not in clinical_df.columns:\n",
    "        # Rename the first column to the trait name if it's the adrenocortical cancer indicator\n",
    "        if len(clinical_df.columns) > 0:\n",
    "            clinical_df.rename(columns={clinical_df.columns[0]: trait}, inplace=True)\n",
    "    \n",
    "    # Transpose gene_data to have samples as rows\n",
    "    gene_data_t = normalized_gene_data.T\n",
    "    \n",
    "    # Link the data using index for proper alignment\n",
    "    linked_data = pd.concat([clinical_df, gene_data_t], axis=1)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # Check if trait column exists before handling missing values\n",
    "    if trait in linked_data.columns:\n",
    "        # Handle missing values\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "        \n",
    "        # Check if the trait is biased\n",
    "        is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "        print(f\"Is trait biased? {is_biased}\")\n",
    "    else:\n",
    "        print(f\"Trait column '{trait}' not found in linked data. Cannot handle missing values or check bias.\")\n",
    "        is_biased = True  # Mark as biased if we can't properly analyze\n",
    "except Exception as e:\n",
    "    print(f\"Error linking data: {str(e)}\")\n",
    "    is_biased = True  # Mark as biased if linking fails\n",
    "    linked_data = clinical_df  # Use just clinical data as fallback\n",
    "\n",
    "# 5. Validate and save cohort information\n",
    "note = \"This dataset contains cancer samples but none are labeled as adrenocortical cancer. All samples are coded as 0 for the trait, making it unsuitable for trait-gene association analysis.\"\n",
    "\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "\n",
    "# 6. Save the linked data if it's usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset is not usable for trait-gene association studies.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}