File size: 6,699 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "83439ddb",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:23:12.760599Z",
     "iopub.status.busy": "2025-03-25T06:23:12.760212Z",
     "iopub.status.idle": "2025-03-25T06:23:12.931670Z",
     "shell.execute_reply": "2025-03-25T06:23:12.931230Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Allergies\"\n",
    "cohort = \"GSE184382\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Allergies\"\n",
    "in_cohort_dir = \"../../input/GEO/Allergies/GSE184382\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Allergies/GSE184382.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Allergies/gene_data/GSE184382.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Allergies/clinical_data/GSE184382.csv\"\n",
    "json_path = \"../../output/preprocess/Allergies/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b11688ef",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "e9dad0a2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:23:12.932961Z",
     "iopub.status.busy": "2025-03-25T06:23:12.932811Z",
     "iopub.status.idle": "2025-03-25T06:23:12.961239Z",
     "shell.execute_reply": "2025-03-25T06:23:12.960845Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Files in trait directory ../../input/GEO/Allergies:\n",
      "['GSE169149', 'GSE182740', 'GSE184382', 'GSE185658', 'GSE192454', 'GSE203196', 'GSE203409', 'GSE205151', 'GSE230164', 'GSE270312', 'GSE84046']\n",
      "\n",
      "Potential cohort paths containing 'GSE184382':\n",
      "../../input/GEO/Allergies/GSE184382\n",
      "  Contents: []\n",
      "\n",
      "Looking for files in trait directory that might be relevant to this cohort:\n",
      "Found 0 files for cohort GSE184382: []\n",
      "No files found for cohort GSE184382. Cannot proceed with preprocessing.\n"
     ]
    }
   ],
   "source": [
    "# 1. Check what files are actually in the directory\n",
    "import os\n",
    "\n",
    "# Check the parent directory (trait directory) in case cohort is a subdirectory\n",
    "print(f\"Files in trait directory {in_trait_dir}:\")\n",
    "trait_dir_files = os.listdir(in_trait_dir)\n",
    "print(trait_dir_files)\n",
    "\n",
    "# Search for the cohort data in the parent directory\n",
    "potential_cohort_paths = []\n",
    "for item in trait_dir_files:\n",
    "    if cohort in item:\n",
    "        potential_cohort_paths.append(os.path.join(in_trait_dir, item))\n",
    "\n",
    "print(f\"\\nPotential cohort paths containing '{cohort}':\")\n",
    "for path in potential_cohort_paths:\n",
    "    print(path)\n",
    "    if os.path.isdir(path):\n",
    "        print(f\"  Contents: {os.listdir(path)}\")\n",
    "\n",
    "# Try to find files directly in the trait directory that might match this cohort\n",
    "print(\"\\nLooking for files in trait directory that might be relevant to this cohort:\")\n",
    "cohort_files = []\n",
    "for file in trait_dir_files:\n",
    "    if cohort in file and os.path.isfile(os.path.join(in_trait_dir, file)):\n",
    "        cohort_files.append(file)\n",
    "        \n",
    "print(f\"Found {len(cohort_files)} files for cohort {cohort}: {cohort_files}\")\n",
    "\n",
    "# If we found cohort files, use the first file that looks like a matrix or SOFT file\n",
    "if cohort_files:\n",
    "    # Sort files to prioritize SOFT or matrix files\n",
    "    soft_files = [f for f in cohort_files if 'soft' in f.lower()]\n",
    "    matrix_files = [f for f in cohort_files if 'matrix' in f.lower() or 'series' in f.lower()]\n",
    "    \n",
    "    if soft_files:\n",
    "        soft_file = os.path.join(in_trait_dir, soft_files[0])\n",
    "        print(f\"Using soft file: {soft_file}\")\n",
    "    else:\n",
    "        print(\"No soft file found directly.\")\n",
    "        soft_file = None\n",
    "        \n",
    "    if matrix_files:\n",
    "        matrix_file = os.path.join(in_trait_dir, matrix_files[0])\n",
    "        print(f\"Using matrix file: {matrix_file}\")\n",
    "    else:\n",
    "        print(\"No matrix file found directly.\")\n",
    "        # If no clear matrix file, use the first file as a fallback\n",
    "        matrix_file = os.path.join(in_trait_dir, cohort_files[0])\n",
    "        print(f\"Using fallback file for matrix: {matrix_file}\")\n",
    "    \n",
    "    # 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "    try:\n",
    "        background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "        clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "        background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "        # 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "        sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "        # 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "        print(\"\\nBackground Information:\")\n",
    "        print(background_info)\n",
    "        print(\"\\nSample Characteristics Dictionary:\")\n",
    "        print(sample_characteristics_dict)\n",
    "    except Exception as e:\n",
    "        print(f\"Error processing file: {e}\")\n",
    "else:\n",
    "    print(f\"No files found for cohort {cohort}. Cannot proceed with preprocessing.\")\n",
    "    \n",
    "    # Set variables to allow code to continue without errors\n",
    "    background_info = \"No background information available\"\n",
    "    clinical_data = pd.DataFrame()\n",
    "    sample_characteristics_dict = {}"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}