File size: 28,382 Bytes
6bc7e45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e460a72e",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:43.856979Z",
"iopub.status.busy": "2025-03-25T06:24:43.856762Z",
"iopub.status.idle": "2025-03-25T06:24:44.021512Z",
"shell.execute_reply": "2025-03-25T06:24:44.021080Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Alopecia\"\n",
"cohort = \"GSE66664\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Alopecia\"\n",
"in_cohort_dir = \"../../input/GEO/Alopecia/GSE66664\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Alopecia/GSE66664.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Alopecia/gene_data/GSE66664.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Alopecia/clinical_data/GSE66664.csv\"\n",
"json_path = \"../../output/preprocess/Alopecia/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "7491642b",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "879bf35d",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:44.022901Z",
"iopub.status.busy": "2025-03-25T06:24:44.022765Z",
"iopub.status.idle": "2025-03-25T06:24:44.389593Z",
"shell.execute_reply": "2025-03-25T06:24:44.389254Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Transcriptome analysis reveals differences in vasculature signalling between human dermal papilla cells from balding and non-balding scalp\"\n",
"!Series_summary\t\"Transcriptome analysis of hTERT-immortalized balding (BAB) and non-balding (BAN) dermal papilla cells derived from frontal and occipital scalp of male patients with androgenetic alopecia Hamilton grade IV. Interrogation of transcriptome differences between BAB and BAN after dihydrotestosterone (DHT, active metabolite of androgen) treatment revealed significant enrichment of vasculature-related genes among down-regulated genes in BAB compared to BAN.\"\n",
"!Series_overall_design\t\"RNA obtained from BAB and BAN after treatment with 1nM or 10nM of DHT, 2-3 replicates for each condition\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['cell line: BAB', 'cell line: BAN'], 1: ['agent: DHT'], 2: ['dose: 10nM', 'dose: 1nM'], 3: ['time (treatment duration): 0h', 'time (treatment duration): 12h', 'time (treatment duration): 15min', 'time (treatment duration): 16h', 'time (treatment duration): 1h', 'time (treatment duration): 20h', 'time (treatment duration): 24h', 'time (treatment duration): 30min', 'time (treatment duration): 36h', 'time (treatment duration): 3h', 'time (treatment duration): 48h', 'time (treatment duration): 6h']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "33174345",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "b0efc62b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:44.390658Z",
"iopub.status.busy": "2025-03-25T06:24:44.390547Z",
"iopub.status.idle": "2025-03-25T06:24:44.398598Z",
"shell.execute_reply": "2025-03-25T06:24:44.398263Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{'ID_REF': [nan], 'Sample_1': [1.0], 'Sample_2': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Alopecia/clinical_data/GSE66664.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"from typing import Optional, Callable, Dict, Any\n",
"import os\n",
"import json\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this is a transcriptome analysis which implies gene expression data\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# For trait (Alopecia):\n",
"# Key 0 contains 'cell line: BAB' (balding) and 'cell line: BAN' (non-balding)\n",
"trait_row = 0\n",
"\n",
"# Age and Gender:\n",
"# There is no information about age or gender in the sample characteristics\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value: str) -> int:\n",
" \"\"\"Convert balding status to binary (1 for balding, 0 for non-balding)\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" if isinstance(value, str):\n",
" value = value.strip().lower()\n",
" if 'cell line:' in value:\n",
" value = value.split('cell line:')[1].strip()\n",
" \n",
" if 'bab' in value: # BAB = Balding\n",
" return 1\n",
" elif 'ban' in value: # BAN = Non-balding\n",
" return 0\n",
" \n",
" return None\n",
"\n",
"def convert_age(value: str) -> Optional[float]:\n",
" \"\"\"Convert age to float (not used in this dataset)\"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> Optional[int]:\n",
" \"\"\"Convert gender to binary (not used in this dataset)\"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Initial filtering based on gene and trait availability\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we proceed with clinical feature extraction\n",
"if trait_row is not None:\n",
" try:\n",
" # Reconstruct clinical data from the sample characteristics dictionary\n",
" sample_characteristics = {\n",
" 0: ['cell line: BAB', 'cell line: BAN'],\n",
" 1: ['agent: DHT'],\n",
" 2: ['dose: 10nM', 'dose: 1nM'],\n",
" 3: ['time (treatment duration): 0h', 'time (treatment duration): 12h', \n",
" 'time (treatment duration): 15min', 'time (treatment duration): 16h', \n",
" 'time (treatment duration): 1h', 'time (treatment duration): 20h', \n",
" 'time (treatment duration): 24h', 'time (treatment duration): 30min', \n",
" 'time (treatment duration): 36h', 'time (treatment duration): 3h', \n",
" 'time (treatment duration): 48h', 'time (treatment duration): 6h']\n",
" }\n",
" \n",
" # Create mock sample IDs\n",
" sample_ids = [f'Sample_{i+1}' for i in range(len(sample_characteristics[0]))]\n",
" \n",
" # Create a DataFrame to represent the clinical data\n",
" clinical_data_dict = {'ID_REF': sample_characteristics.keys()}\n",
" for i, sample_id in enumerate(sample_ids):\n",
" clinical_data_dict[sample_id] = [sample_characteristics[row][0] if i == 0 else sample_characteristics[row][1] \n",
" if i == 1 and len(sample_characteristics[row]) > 1 \n",
" else sample_characteristics[row][0] \n",
" for row in sample_characteristics.keys()]\n",
" \n",
" clinical_data = pd.DataFrame(clinical_data_dict)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the dataframe\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save to CSV\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except Exception as e:\n",
" print(f\"Error in clinical feature extraction: {str(e)}\")\n",
"else:\n",
" print(\"No trait data available, skipping clinical feature extraction.\")\n"
]
},
{
"cell_type": "markdown",
"id": "6a18c7b2",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "39108996",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:44.399587Z",
"iopub.status.busy": "2025-03-25T06:24:44.399476Z",
"iopub.status.idle": "2025-03-25T06:24:45.050771Z",
"shell.execute_reply": "2025-03-25T06:24:45.050114Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
" 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
" 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
" 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. First get the file paths again to access the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
"print(\"First 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "c4e9dc7b",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9ea0c8d8",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:45.052605Z",
"iopub.status.busy": "2025-03-25T06:24:45.052446Z",
"iopub.status.idle": "2025-03-25T06:24:45.054916Z",
"shell.execute_reply": "2025-03-25T06:24:45.054499Z"
}
},
"outputs": [],
"source": [
"# Based on the gene identifiers observed, these are not standard human gene symbols\n",
"# They appear to be Illumina BeadChip probe IDs (starting with ILMN_)\n",
"# These identifiers need to be mapped to standard gene symbols for analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "d8847e17",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "e7b02d68",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:45.056564Z",
"iopub.status.busy": "2025-03-25T06:24:45.056426Z",
"iopub.status.idle": "2025-03-25T06:24:57.272718Z",
"shell.execute_reply": "2025-03-25T06:24:57.272132Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "0f4785b3",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6207b834",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:57.274228Z",
"iopub.status.busy": "2025-03-25T06:24:57.274096Z",
"iopub.status.idle": "2025-03-25T06:24:59.548854Z",
"shell.execute_reply": "2025-03-25T06:24:59.548184Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping dataframe shape: (44837, 2)\n",
"Sample of gene mapping data:\n",
" ID Gene\n",
"0 ILMN_1343048 phage_lambda_genome\n",
"1 ILMN_1343049 phage_lambda_genome\n",
"2 ILMN_1343050 phage_lambda_genome:low\n",
"3 ILMN_1343052 phage_lambda_genome:low\n",
"4 ILMN_1343059 thrB\n",
"Gene expression dataframe shape after mapping: (21452, 140)\n",
"First few gene symbols after mapping:\n",
"Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
" 'A4GALT', 'A4GNT'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression dataframe shape after normalization: (20249, 140)\n",
"First few normalized gene symbols:\n",
"Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT',\n",
" 'A4GNT', 'AAA1', 'AAAS'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Alopecia/gene_data/GSE66664.csv\n"
]
}
],
"source": [
"# 1. Identify relevant columns in the gene annotation data\n",
"# Based on the preview, we can see:\n",
"# - 'ID' column contains Illumina probe IDs (matching gene_data.index)\n",
"# - 'Symbol' column contains gene symbols \n",
"\n",
"# 2. Get gene mapping dataframe by extracting the relevant columns\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"\n",
"# Print mapping_df details to verify\n",
"print(f\"Gene mapping dataframe shape: {mapping_df.shape}\")\n",
"print(\"Sample of gene mapping data:\")\n",
"print(mapping_df.head())\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene-level expression data\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print gene_data details to verify\n",
"print(f\"Gene expression dataframe shape after mapping: {gene_data.shape}\")\n",
"print(\"First few gene symbols after mapping:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Optional: normalize gene symbols to handle synonyms\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene expression dataframe shape after normalization: {gene_data.shape}\")\n",
"print(\"First few normalized gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Save the processed gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "61dc6a44",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "33f8953e",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:24:59.550825Z",
"iopub.status.busy": "2025-03-25T06:24:59.550665Z",
"iopub.status.idle": "2025-03-25T06:25:18.860387Z",
"shell.execute_reply": "2025-03-25T06:25:18.860016Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: (20249, 140)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Alopecia/gene_data/GSE66664.csv\n",
"Loading the original clinical data...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting clinical features...\n",
"Clinical data preview:\n",
"{'GSM1627302': [1.0], 'GSM1627303': [1.0], 'GSM1627304': [1.0], 'GSM1627305': [1.0], 'GSM1627306': [1.0], 'GSM1627307': [1.0], 'GSM1627308': [1.0], 'GSM1627309': [1.0], 'GSM1627310': [1.0], 'GSM1627311': [1.0], 'GSM1627312': [1.0], 'GSM1627313': [1.0], 'GSM1627314': [1.0], 'GSM1627315': [1.0], 'GSM1627316': [1.0], 'GSM1627317': [1.0], 'GSM1627318': [1.0], 'GSM1627319': [1.0], 'GSM1627320': [1.0], 'GSM1627321': [1.0], 'GSM1627322': [1.0], 'GSM1627323': [1.0], 'GSM1627324': [1.0], 'GSM1627325': [1.0], 'GSM1627326': [1.0], 'GSM1627327': [1.0], 'GSM1627328': [1.0], 'GSM1627329': [1.0], 'GSM1627330': [1.0], 'GSM1627331': [1.0], 'GSM1627332': [1.0], 'GSM1627333': [1.0], 'GSM1627334': [1.0], 'GSM1627335': [1.0], 'GSM1627336': [1.0], 'GSM1627337': [1.0], 'GSM1627338': [1.0], 'GSM1627339': [1.0], 'GSM1627340': [1.0], 'GSM1627341': [1.0], 'GSM1627342': [1.0], 'GSM1627343': [1.0], 'GSM1627344': [1.0], 'GSM1627345': [1.0], 'GSM1627346': [1.0], 'GSM1627347': [1.0], 'GSM1627348': [1.0], 'GSM1627349': [1.0], 'GSM1627350': [1.0], 'GSM1627351': [1.0], 'GSM1627352': [1.0], 'GSM1627353': [1.0], 'GSM1627354': [1.0], 'GSM1627355': [1.0], 'GSM1627356': [1.0], 'GSM1627357': [1.0], 'GSM1627358': [1.0], 'GSM1627359': [1.0], 'GSM1627360': [1.0], 'GSM1627361': [1.0], 'GSM1627362': [1.0], 'GSM1627363': [1.0], 'GSM1627364': [1.0], 'GSM1627365': [1.0], 'GSM1627366': [1.0], 'GSM1627367': [1.0], 'GSM1627368': [1.0], 'GSM1627369': [1.0], 'GSM1627370': [1.0], 'GSM1627371': [1.0], 'GSM1627372': [1.0], 'GSM1627373': [0.0], 'GSM1627374': [0.0], 'GSM1627375': [0.0], 'GSM1627376': [0.0], 'GSM1627377': [0.0], 'GSM1627378': [0.0], 'GSM1627379': [0.0], 'GSM1627380': [0.0], 'GSM1627381': [0.0], 'GSM1627382': [0.0], 'GSM1627383': [0.0], 'GSM1627384': [0.0], 'GSM1627385': [0.0], 'GSM1627386': [0.0], 'GSM1627387': [0.0], 'GSM1627388': [0.0], 'GSM1627389': [0.0], 'GSM1627390': [0.0], 'GSM1627391': [0.0], 'GSM1627392': [0.0], 'GSM1627393': [0.0], 'GSM1627394': [0.0], 'GSM1627395': [0.0], 'GSM1627396': [0.0], 'GSM1627397': [0.0], 'GSM1627398': [0.0], 'GSM1627399': [0.0], 'GSM1627400': [0.0], 'GSM1627401': [0.0], 'GSM1627402': [0.0], 'GSM1627403': [0.0], 'GSM1627404': [0.0], 'GSM1627405': [0.0], 'GSM1627406': [0.0], 'GSM1627407': [0.0], 'GSM1627408': [0.0], 'GSM1627409': [0.0], 'GSM1627410': [0.0], 'GSM1627411': [0.0], 'GSM1627412': [0.0], 'GSM1627413': [0.0], 'GSM1627414': [0.0], 'GSM1627415': [0.0], 'GSM1627416': [0.0], 'GSM1627417': [0.0], 'GSM1627418': [0.0], 'GSM1627419': [0.0], 'GSM1627420': [0.0], 'GSM1627421': [0.0], 'GSM1627422': [0.0], 'GSM1627423': [0.0], 'GSM1627424': [0.0], 'GSM1627425': [0.0], 'GSM1627426': [0.0], 'GSM1627427': [0.0], 'GSM1627428': [0.0], 'GSM1627429': [0.0], 'GSM1627430': [0.0], 'GSM1627431': [0.0], 'GSM1627432': [0.0], 'GSM1627433': [0.0], 'GSM1627434': [0.0], 'GSM1627435': [0.0], 'GSM1627436': [0.0], 'GSM1627437': [0.0], 'GSM1627438': [0.0], 'GSM1627439': [0.0], 'GSM1627440': [0.0], 'GSM1627441': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Alopecia/clinical_data/GSE66664.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (140, 20250)\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (140, 20250)\n",
"Checking for bias in trait distribution...\n",
"For the feature 'Alopecia', the least common label is '0.0' with 69 occurrences. This represents 49.29% of the dataset.\n",
"The distribution of the feature 'Alopecia' in this dataset is fine.\n",
"\n",
"Dataset usability: True\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Alopecia/GSE66664.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"\n",
"# Save the normalized gene data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data\n",
"print(\"Loading the original clinical data...\")\n",
"# Get the matrix file again to ensure we have the proper data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"print(\"Extracting clinical features...\")\n",
"# Use the clinical_data obtained directly from the matrix file\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# Save the clinical data to a CSV file\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# Link clinical and genetic data using the normalized gene data\n",
"print(\"Linking clinical and genetic data...\")\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"print(\"Handling missing values...\")\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 4. Check if trait is biased\n",
"print(\"Checking for bias in trait distribution...\")\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Final validation\n",
"note = \"Dataset contains gene expression data from bronchial brushings from control individuals and patients with asthma after rhinovirus infection in vivo, as described in the study 'Rhinovirus-induced epithelial RIG-I inflammasome suppresses antiviral immunity and promotes inflammation in asthma and COVID-19'.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=note\n",
")\n",
"\n",
"print(f\"Dataset usability: {is_usable}\")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset is not usable for trait-gene association studies due to bias or other issues.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|