File size: 33,024 Bytes
e4183cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "92789792",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:26.480037Z",
     "iopub.status.busy": "2025-03-25T08:31:26.479585Z",
     "iopub.status.idle": "2025-03-25T08:31:26.643901Z",
     "shell.execute_reply": "2025-03-25T08:31:26.643580Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"COVID-19\"\n",
    "cohort = \"GSE216705\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/COVID-19\"\n",
    "in_cohort_dir = \"../../input/GEO/COVID-19/GSE216705\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/COVID-19/GSE216705.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/COVID-19/gene_data/GSE216705.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/COVID-19/clinical_data/GSE216705.csv\"\n",
    "json_path = \"../../output/preprocess/COVID-19/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4e575dcb",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "07f964d6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:26.645232Z",
     "iopub.status.busy": "2025-03-25T08:31:26.645100Z",
     "iopub.status.idle": "2025-03-25T08:31:26.742874Z",
     "shell.execute_reply": "2025-03-25T08:31:26.742589Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Loss of GM-CSF-dependent instruction of alveolar macrophages in COVID-19 provides a rationale for inhaled GM-CSF treatment\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['strain: C57BL/6'], 1: ['metadata info: metaData_microarrays.txt']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cddfa4a5",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "785a9429",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:26.743921Z",
     "iopub.status.busy": "2025-03-25T08:31:26.743820Z",
     "iopub.status.idle": "2025-03-25T08:31:26.750213Z",
     "shell.execute_reply": "2025-03-25T08:31:26.749941Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Based on the background information and sample characteristics, let's analyze this dataset\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# The background information about \"Loss of GM-CSF-dependent instruction of alveolar macrophages in COVID-19\"\n",
    "# suggests this is likely a gene expression dataset studying COVID-19's effects\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# Looking at the sample characteristics dictionary, we don't see typical human clinical data\n",
    "# The dict shows 'strain: C57BL/6' which indicates this is likely a mouse model study, not human data\n",
    "# and 'metadata info: metaData_microarrays.txt' which refers to external metadata\n",
    "\n",
    "# 2.1 Data Availability\n",
    "# Since we don't see trait, age, or gender data in the sample characteristics,\n",
    "# we'll set all row identifiers to None\n",
    "trait_row = None  # No COVID-19 status information in the sample characteristics\n",
    "age_row = None    # No age information in the sample characteristics\n",
    "gender_row = None # No gender information in the sample characteristics\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# Define conversion functions in case they're needed, even though we don't have the data\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    value = value.split(\":\")[-1].strip() if \":\" in value else value.strip()\n",
    "    if value.lower() in [\"covid-19\", \"positive\", \"covid\", \"yes\"]:\n",
    "        return 1\n",
    "    elif value.lower() in [\"healthy\", \"control\", \"negative\", \"no\"]:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    value = value.split(\":\")[-1].strip() if \":\" in value else value.strip()\n",
    "    try:\n",
    "        return float(value)\n",
    "    except ValueError:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    value = value.split(\":\")[-1].strip() if \":\" in value else value.strip()\n",
    "    if value.lower() in [\"female\", \"f\"]:\n",
    "        return 0\n",
    "    elif value.lower() in [\"male\", \"m\"]:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Trait data is not available since trait_row is None\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial usability information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we'll skip this substep\n",
    "# If trait_row was not None, we would have executed:\n",
    "# clinical_df = geo_select_clinical_features(\n",
    "#     clinical_df=clinical_data,\n",
    "#     trait=trait,\n",
    "#     trait_row=trait_row,\n",
    "#     convert_trait=convert_trait,\n",
    "#     age_row=age_row,\n",
    "#     convert_age=convert_age,\n",
    "#     gender_row=gender_row,\n",
    "#     convert_gender=convert_gender\n",
    "# )\n",
    "# preview_df(clinical_df)\n",
    "# clinical_df.to_csv(out_clinical_data_file)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a619f55c",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "61a1e12e",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:26.751206Z",
     "iopub.status.busy": "2025-03-25T08:31:26.751107Z",
     "iopub.status.idle": "2025-03-25T08:31:26.871768Z",
     "shell.execute_reply": "2025-03-25T08:31:26.871401Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SOFT file: ../../input/GEO/COVID-19/GSE216705/GSE216705_family.soft.gz\n",
      "Matrix file: ../../input/GEO/COVID-19/GSE216705/GSE216705-GPL6246_series_matrix.txt.gz\n",
      "Found the matrix table marker at line 62\n",
      "Gene data shape: (35556, 27)\n",
      "First 20 gene/probe identifiers:\n",
      "['10338001', '10338002', '10338003', '10338004', '10338005', '10338006', '10338007', '10338008', '10338009', '10338010', '10338011', '10338012', '10338013', '10338014', '10338015', '10338016', '10338017', '10338018', '10338019', '10338020']\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"SOFT file: {soft_file}\")\n",
    "print(f\"Matrix file: {matrix_file}\")\n",
    "\n",
    "# Set gene availability flag\n",
    "is_gene_available = True  # Initially assume gene data is available\n",
    "\n",
    "# First check if the matrix file contains the expected marker\n",
    "found_marker = False\n",
    "marker_row = None\n",
    "try:\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        for i, line in enumerate(file):\n",
    "            if \"!series_matrix_table_begin\" in line:\n",
    "                found_marker = True\n",
    "                marker_row = i\n",
    "                print(f\"Found the matrix table marker at line {i}\")\n",
    "                break\n",
    "    \n",
    "    if not found_marker:\n",
    "        print(\"Warning: Could not find '!series_matrix_table_begin' marker in the file.\")\n",
    "        is_gene_available = False\n",
    "        \n",
    "    # If marker was found, try to extract gene data\n",
    "    if is_gene_available:\n",
    "        try:\n",
    "            # Try using the library function\n",
    "            gene_data = get_genetic_data(matrix_file)\n",
    "            \n",
    "            if gene_data.shape[0] == 0:\n",
    "                print(\"Warning: Extracted gene data has 0 rows.\")\n",
    "                is_gene_available = False\n",
    "            else:\n",
    "                print(f\"Gene data shape: {gene_data.shape}\")\n",
    "                # Print the first 20 gene/probe identifiers\n",
    "                print(\"First 20 gene/probe identifiers:\")\n",
    "                print(gene_data.index[:20].tolist())\n",
    "        except Exception as e:\n",
    "            print(f\"Error extracting gene data with get_genetic_data(): {e}\")\n",
    "            is_gene_available = False\n",
    "    \n",
    "    # If gene data extraction failed, examine file content to diagnose\n",
    "    if not is_gene_available:\n",
    "        print(\"Examining file content to diagnose the issue:\")\n",
    "        try:\n",
    "            with gzip.open(matrix_file, 'rt') as file:\n",
    "                # Print lines around the marker if found\n",
    "                if marker_row is not None:\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i >= marker_row - 2 and i <= marker_row + 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        if i > marker_row + 10:\n",
    "                            break\n",
    "                else:\n",
    "                    # If marker not found, print first 10 lines\n",
    "                    for i, line in enumerate(file):\n",
    "                        if i < 10:\n",
    "                            print(f\"Line {i}: {line.strip()[:100]}...\")\n",
    "                        else:\n",
    "                            break\n",
    "        except Exception as e2:\n",
    "            print(f\"Error examining file: {e2}\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error processing file: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# Update validation information if gene data extraction failed\n",
    "if not is_gene_available:\n",
    "    print(\"Gene expression data could not be successfully extracted from this dataset.\")\n",
    "    # Update the validation record since gene data isn't available\n",
    "    is_trait_available = False  # We already determined trait data isn't available in step 2\n",
    "    validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,\n",
    "                                 is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7d3bf662",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "109711f3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:26.873008Z",
     "iopub.status.busy": "2025-03-25T08:31:26.872888Z",
     "iopub.status.idle": "2025-03-25T08:31:26.874784Z",
     "shell.execute_reply": "2025-03-25T08:31:26.874514Z"
    }
   },
   "outputs": [],
   "source": [
    "# Analyzing the gene identifiers provided in the previous output\n",
    "# The identifiers appear to be probe IDs (numeric format like '10338001') rather than standard human gene symbols\n",
    "# Human gene symbols typically follow patterns like \"BRCA1\", \"TP53\", etc.\n",
    "# These numeric identifiers need to be mapped to human gene symbols for meaningful analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d9a0110e",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "95a5c320",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:26.875855Z",
     "iopub.status.busy": "2025-03-25T08:31:26.875753Z",
     "iopub.status.idle": "2025-03-25T08:31:29.190497Z",
     "shell.execute_reply": "2025-03-25T08:31:29.190121Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "Columns in gene annotation: ['ID', 'GB_LIST', 'SPOT_ID', 'seqname', 'RANGE_GB', 'RANGE_STRAND', 'RANGE_START', 'RANGE_STOP', 'total_probes', 'gene_assignment', 'mrna_assignment', 'category']\n",
      "{'ID': ['10344614', '10344616', '10344618'], 'GB_LIST': ['AK145513,AK145782', nan, nan], 'SPOT_ID': ['chr1:3054233-3054733', 'chr1:3102016-3102125', 'chr1:3276323-3277348'], 'seqname': ['chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000067.6', 'NC_000067.6', 'NC_000067.6'], 'RANGE_STRAND': ['+', '+', '+'], 'RANGE_START': ['3054233', '3102016', '3276323'], 'RANGE_STOP': ['3054733', '3102125', '3277348'], 'total_probes': [33.0, 25.0, 25.0], 'gene_assignment': ['ENSMUST00000160944 // Gm16088 // predicted gene 16088 // --- // --- /// ENSMUST00000120800 // Gm14300 // predicted gene 14300 // --- // --- /// ENSMUST00000179907 // G430049J08Rik // RIKEN cDNA G430049J08 gene // --- // --- /// AK145513 // Gm2889 // predicted gene 2889 // 18 A1|18 // 100040658', 'ENSMUST00000082908 // Gm26206 // predicted gene, 26206 // --- // ---', '---'], 'mrna_assignment': ['ENSMUST00000160944 // ENSEMBL // havana:known chromosome:GRCm38:1:3054233:3054733:1 gene:ENSMUSG00000090025 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 100 // 33 // 33 // 0 /// ENSMUST00000120800 // ENSEMBL // havana:known chromosome:GRCm38:2:179612622:179613567:-1 gene:ENSMUSG00000083410 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 30 // 100 // 10 // 33 // 0 /// ENSMUST00000179907 // ENSEMBL // ensembl:known chromosome:GRCm38:18:3471630:3474315:1 gene:ENSMUSG00000096528 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 42 // 100 // 14 // 33 // 0 /// AK145513 // GenBank HTC // Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0009C06 product:hypothetical DeoxyUTP pyrophosphatase/Aspartyl protease, retroviral-type family profile/Retrovirus capsid, C-terminal/Peptidase aspartic/Peptidase aspartic, active site containing protein, full insert sequence. // chr1 // 24 // 100 // 8 // 33 // 0 /// AK145782 // GenBank HTC // Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0042P10 product:hypothetical protein, full insert sequence. // chr1 // 52 // 100 // 17 // 33 // 0 /// KnowTID_00005135 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 52 // 100 // 17 // 33 // 0 /// NONMMUT044096 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 52 // 100 // 17 // 33 // 0 /// AK139746 // GenBank HTC // Mus musculus 2 cells egg cDNA, RIKEN full-length enriched library, clone:B020014N01 product:hypothetical protein, full insert sequence. // chr1 // 42 // 100 // 14 // 33 // 0 /// AK145590 // GenBank HTC // Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0019N16 product:unclassifiable, full insert sequence. // chr1 // 42 // 100 // 14 // 33 // 0 /// AK145750 // GenBank HTC // Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0037K09 product:unclassifiable, full insert sequence. // chr1 // 36 // 85 // 10 // 28 // 0 /// AK165162 // GenBank HTC // Mus musculus 8 cells embryo 8 cells cDNA, RIKEN full-length enriched library, clone:E860009L19 product:unclassifiable, full insert sequence. // chr1 // 48 // 100 // 16 // 33 // 0 /// KnowTID_00001379 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 42 // 100 // 14 // 33 // 0 /// KnowTID_00001380 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 42 // 100 // 14 // 33 // 0 /// KnowTID_00002541 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 36 // 85 // 10 // 28 // 0 /// KnowTID_00003768 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 42 // 100 // 14 // 33 // 0 /// KnowTID_00005134 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 45 // 100 // 15 // 33 // 0 /// NONMMUT013638 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 42 // 100 // 14 // 33 // 0 /// NONMMUT013641 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 42 // 100 // 14 // 33 // 0 /// NONMMUT021887 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 36 // 85 // 10 // 28 // 0 /// NONMMUT044095 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 45 // 100 // 15 // 33 // 0 /// NONMMUT046086 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 48 // 100 // 16 // 33 // 0 /// NONMMUT046087 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 48 // 100 // 16 // 33 // 0 /// AK145700 // GenBank HTC // Mus musculus blastocyst blastocyst cDNA, RIKEN full-length enriched library, clone:I1C0031F10 product:hypothetical protein, full insert sequence. // chr1 // 24 // 100 // 8 // 33 // 0 /// KnowTID_00003789 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 24 // 100 // 8 // 33 // 0 /// NONMMUT031618 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 24 // 100 // 8 // 33 // 0 /// KnowTID_00002704 // Luo lincRNA // Non-coding transcript identified by Luo, et al. // chr1 // 24 // 24 // 8 // 33 // 1 /// NONMMUT023055 // NONCODE // Non-coding transcript identified by NONCODE: Linc // chr1 // 24 // 24 // 8 // 33 // 1', 'ENSMUST00000082908 // ENSEMBL // ncrna:known chromosome:GRCm38:1:3102016:3102125:1 gene:ENSMUSG00000064842 gene_biotype:snRNA transcript_biotype:snRNA // chr1 // 100 // 100 // 25 // 25 // 0 /// NONMMUT000002 // NONCODE // Non-coding transcript identified by NONCODE // chr1 // 100 // 100 // 25 // 25 // 0', '---'], 'category': ['main', 'main', 'main']}\n",
      "\n",
      "Examining 'gene_assignment' column examples:\n",
      "Example 1: ENSMUST00000160944 // Gm16088 // predicted gene 16088 // --- // --- /// ENSMUST00000120800 // Gm14300 // predicted gene 14300 // --- // --- /// ENSMUST00000179907 // G430049J08Rik // RIKEN cDNA G43004...\n",
      "Example 2: ENSMUST00000082908 // Gm26206 // predicted gene, 26206 // --- // ---\n",
      "Example 3: ---\n",
      "Example 4: AK140060 // Gm10568 // predicted gene 10568 // --- // 100038431\n",
      "Example 5: ---\n",
      "\n",
      "Gene assignment column completeness: 35556/995596 rows (3.57%)\n",
      "Probes without gene assignments: 8197/995596 rows (0.82%)\n",
      "\n",
      "Columns identified for gene mapping:\n",
      "- 'ID': Contains probe IDs (e.g., 7896736)\n",
      "- 'gene_assignment': Contains gene information that needs parsing to extract gene symbols\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n",
    "print(preview_df(gene_annotation, n=3))\n",
    "\n",
    "# Examining the gene_assignment column which appears to contain gene symbol information\n",
    "print(\"\\nExamining 'gene_assignment' column examples:\")\n",
    "if 'gene_assignment' in gene_annotation.columns:\n",
    "    # Display a few examples of the gene_assignment column to understand its format\n",
    "    gene_samples = gene_annotation['gene_assignment'].head(5).tolist()\n",
    "    for i, sample in enumerate(gene_samples):\n",
    "        print(f\"Example {i+1}: {sample[:200]}...\" if isinstance(sample, str) and len(sample) > 200 else f\"Example {i+1}: {sample}\")\n",
    "    \n",
    "    # Check the quality and completeness of the gene_assignment column\n",
    "    non_null_assignments = gene_annotation['gene_assignment'].notna().sum()\n",
    "    total_rows = len(gene_annotation)\n",
    "    print(f\"\\nGene assignment column completeness: {non_null_assignments}/{total_rows} rows ({non_null_assignments/total_rows:.2%})\")\n",
    "    \n",
    "    # Check for probe IDs without gene assignments (typically '---' entries)\n",
    "    missing_assignments = gene_annotation[gene_annotation['gene_assignment'] == '---'].shape[0]\n",
    "    print(f\"Probes without gene assignments: {missing_assignments}/{total_rows} rows ({missing_assignments/total_rows:.2%})\")\n",
    "    \n",
    "    # Identify the columns needed for gene mapping\n",
    "    print(\"\\nColumns identified for gene mapping:\")\n",
    "    print(\"- 'ID': Contains probe IDs (e.g., 7896736)\")\n",
    "    print(\"- 'gene_assignment': Contains gene information that needs parsing to extract gene symbols\")\n",
    "else:\n",
    "    print(\"Error: 'gene_assignment' column not found in annotation data.\")\n",
    "    print(\"Available columns:\", gene_annotation.columns.tolist())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e9b7fd0f",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "b706a199",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:29.191822Z",
     "iopub.status.busy": "2025-03-25T08:31:29.191707Z",
     "iopub.status.idle": "2025-03-25T08:31:30.356745Z",
     "shell.execute_reply": "2025-03-25T08:31:30.356378Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data shape: (35556, 27)\n",
      "Sample gene expression IDs: ['10338001', '10338002', '10338003', '10338004', '10338005']\n",
      "Creating gene mapping dataframe...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping dataframe shape: (290501, 2)\n",
      "Sample mapping entries:\n",
      "         ID           Gene\n",
      "0  10344614        Gm16088\n",
      "0  10344614        Gm14300\n",
      "0  10344614  G430049J08Rik\n",
      "0  10344614         Gm2889\n",
      "1  10344616        Gm26206\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data after mapping: (290, 27)\n",
      "Sample gene symbols: ['A330087I24', 'A730034C02', 'AA066038', 'AA386476', 'AA388235', 'AA414768', 'AA415398', 'AA467197', 'AA474408', 'AA667203']\n",
      "Gene expression data saved to ../../output/preprocess/COVID-19/gene_data/GSE216705.csv\n"
     ]
    }
   ],
   "source": [
    "# Check the format of IDs in our gene expression data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Gene expression data shape: {gene_data.shape}\")\n",
    "print(f\"Sample gene expression IDs: {gene_data.index[:5].tolist()}\")\n",
    "\n",
    "# Extract the mapping between probe IDs and gene symbols\n",
    "# Based on the previous output, we need the 'ID' column (probe identifiers) and 'gene_assignment' column (gene symbols)\n",
    "print(\"Creating gene mapping dataframe...\")\n",
    "\n",
    "# Create a function to extract gene symbols from gene_assignment string\n",
    "def extract_gene_symbols(gene_assignment_str):\n",
    "    if not isinstance(gene_assignment_str, str) or gene_assignment_str == '---':\n",
    "        return []\n",
    "    \n",
    "    # The format appears to be \"ENSMUST... // GeneName // description // --- // ---\"\n",
    "    # We want to extract the gene names (second element after '//')\n",
    "    genes = []\n",
    "    assignments = gene_assignment_str.split('///')\n",
    "    for assignment in assignments:\n",
    "        parts = assignment.strip().split('//')\n",
    "        if len(parts) >= 2:\n",
    "            gene_symbol = parts[1].strip()\n",
    "            if gene_symbol and gene_symbol != '---':\n",
    "                genes.append(gene_symbol)\n",
    "    return genes\n",
    "\n",
    "# Apply extraction function to create mapping dataframe\n",
    "gene_annotation['Genes'] = gene_annotation['gene_assignment'].apply(extract_gene_symbols)\n",
    "valid_rows = gene_annotation['Genes'].apply(len) > 0\n",
    "mapping_df = gene_annotation.loc[valid_rows, ['ID', 'Genes']]\n",
    "mapping_df = mapping_df.explode('Genes')\n",
    "mapping_df = mapping_df.rename(columns={'Genes': 'Gene'})\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"Sample mapping entries:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Gene expression data after mapping: {gene_data.shape}\")\n",
    "print(f\"Sample gene symbols: {gene_data.index[:10].tolist()}\")\n",
    "\n",
    "# Save the gene expression data\n",
    "if gene_data.shape[0] > 0:\n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
    "else:\n",
    "    print(\"No gene expression data to save after mapping.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d3de0ce4",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "d50710f1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:31:30.358105Z",
     "iopub.status.busy": "2025-03-25T08:31:30.357987Z",
     "iopub.status.idle": "2025-03-25T08:31:30.432674Z",
     "shell.execute_reply": "2025-03-25T08:31:30.432306Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape after normalization: (34, 27)\n",
      "Normalized gene data saved to ../../output/preprocess/COVID-19/gene_data/GSE216705.csv\n",
      "No clinical features available, skipping clinical data processing.\n",
      "Abnormality detected in the cohort: GSE216705. Preprocessing failed.\n",
      "Linked data not saved due to quality issues or missing trait information.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Create output directory if it doesn't exist\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "\n",
    "# Save the normalized gene data\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Determine if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Skip clinical processing if trait_row is None\n",
    "if is_trait_available:\n",
    "    # 2. Extract clinical features using the previously identified feature rows\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Create directory for clinical data output\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical features\n",
    "    clinical_features.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
    "    \n",
    "    # Preview the clinical features\n",
    "    clinical_features_preview = preview_df(clinical_features.T)\n",
    "    print(\"Clinical features preview:\")\n",
    "    print(clinical_features_preview)\n",
    "    \n",
    "    # 3. Link clinical and genetic data\n",
    "    linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Handle missing values in the linked data\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 5. Determine if trait and demographic features are biased\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "else:\n",
    "    print(\"No clinical features available, skipping clinical data processing.\")\n",
    "    # Create a minimal DataFrame with the trait column\n",
    "    linked_data = pd.DataFrame({trait: []})\n",
    "    is_biased = True  # Set to True because without trait data, it's unusable\n",
    "\n",
    "# 6. Validate and save cohort info\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains mouse gene expression data but lacks human clinical annotations for COVID-19.\"\n",
    ")\n",
    "\n",
    "# 7. Save the linked data if it's usable\n",
    "if is_usable and is_trait_available:\n",
    "    # Create output directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the linked data\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Linked data not saved due to quality issues or missing trait information.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}