File size: 27,128 Bytes
32677ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "a673eb5c",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Eczema\"\n",
"cohort = \"GSE61225\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Eczema\"\n",
"in_cohort_dir = \"../../input/GEO/Eczema/GSE61225\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Eczema/GSE61225.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Eczema/gene_data/GSE61225.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Eczema/clinical_data/GSE61225.csv\"\n",
"json_path = \"../../output/preprocess/Eczema/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "ba7645bd",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bd7f464e",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "5207c5a4",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d9a2283d",
"metadata": {},
"outputs": [],
"source": [
"# 1. Gene Expression Data Availability\n",
"# From the background information, we can see this is a gene expression study\n",
"# \"Gene expression in whole blood RNA was evaluated using Illumina HumanHT-12v3 Expression-BeadChip\"\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# For trait - in this study about exposure to swimming pool water, we'll use swimming pool exposure\n",
"trait_row = 2 # 'swimming pool water exposure time' shows exposure status\n",
"\n",
"# For age information\n",
"age_row = 6 # 'age' is available\n",
"\n",
"# For gender information\n",
"gender_row = 5 # 'gender' is available\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" \"\"\"\n",
" Convert swimming pool exposure to binary trait\n",
" 0 = no exposure (0 minutes)\n",
" 1 = exposure (40 minutes)\n",
" \"\"\"\n",
" if not value or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if needed\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to exposure status (binary)\n",
" if '0 minutes' in value:\n",
" return 0 # No exposure\n",
" elif '40 minutes' in value:\n",
" return 1 # Exposure\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"\n",
" Convert age to continuous value\n",
" \"\"\"\n",
" if not value or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if needed\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"\n",
" Convert gender to binary\n",
" 0 = female\n",
" 1 = male\n",
" \"\"\"\n",
" if not value or pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after colon if needed\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" value = value.lower()\n",
" if 'female' in value:\n",
" return 0\n",
" elif 'male' in value:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Construct clinical data from the sample characteristics dictionary\n",
" # First, create a dictionary to store the data\n",
" data = {}\n",
" \n",
" # Extract sample IDs (assuming they're at index 0)\n",
" sample_ids = [s.split(': ')[1] for s in sample_characteristics[0]]\n",
" \n",
" # Prepare data for each feature\n",
" trait_values = [convert_trait(s) for s in sample_characteristics[trait_row]]\n",
" age_values = [convert_age(s) for s in sample_characteristics[age_row]]\n",
" gender_values = [convert_gender(s) for s in sample_characteristics[gender_row]]\n",
" \n",
" # Create DataFrame with the clinical data\n",
" clinical_data = pd.DataFrame({\n",
" 'ID_REF': sample_ids,\n",
" 'VALUE': trait_values,\n",
" 'Age': age_values,\n",
" 'Gender': gender_values\n",
" })\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_data,\n",
" trait=trait,\n",
" trait_row=1, # Column position in the DataFrame (VALUE column)\n",
" convert_trait=lambda x: x, # Values are already converted\n",
" age_row=2, # Column position in the DataFrame (Age column)\n",
" convert_age=lambda x: x, # Values are already converted\n",
" gender_row=3, # Column position in the DataFrame (Gender column)\n",
" convert_gender=lambda x: x # Values are already converted\n",
" )\n",
" \n",
" # Preview the clinical data\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical data:\")\n",
" print(preview)\n",
" \n",
" # Save clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "6ac00181",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a4e15502",
"metadata": {},
"outputs": [],
"source": [
"I'll revise the code to address the syntax errors and properly implement the required functionality.\n",
"\n",
"```python\n",
"# Examining the sample characteristics from output_dict\n",
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"import glob\n",
"\n",
"# Let's try to find the clinical data and determine what we have\n",
"files = os.listdir(in_cohort_dir)\n",
"print(f\"Files found in directory: {files}\")\n",
"\n",
"# Step 1: Find the clinical data file in the cohort directory\n",
"# Try different possible file patterns for clinical data\n",
"clinical_file = None\n",
"possible_patterns = [\n",
" '*characteristics*', '*clinical*', '*sample*', '*.soft', '*.txt', '*.tsv'\n",
"]\n",
"\n",
"for pattern in possible_patterns:\n",
" matching_files = glob.glob(os.path.join(in_cohort_dir, pattern))\n",
" if matching_files:\n",
" # Try to read each file and see if it has the expected format for clinical data\n",
" for file in matching_files:\n",
" try:\n",
" df = pd.read_csv(file, sep='\\t', nrows=5)\n",
" # If the file has multiple columns and rows, it's likely clinical data\n",
" if df.shape[1] > 1 and df.shape[0] > 0:\n",
" clinical_file = file\n",
" break\n",
" except Exception as e:\n",
" print(f\"Couldn't read {file} as tabular data: {e}\")\n",
" # Try with comma separator\n",
" try:\n",
" df = pd.read_csv(file, nrows=5)\n",
" if df.shape[1] > 1 and df.shape[0] > 0:\n",
" clinical_file = file\n",
" break\n",
" except:\n",
" pass\n",
" if clinical_file:\n",
" break\n",
"\n",
"if clinical_file:\n",
" print(f\"Found clinical data file: {clinical_file}\")\n",
" try:\n",
" clinical_data = pd.read_csv(clinical_file, sep='\\t')\n",
" except:\n",
" clinical_data = pd.read_csv(clinical_file)\n",
" \n",
" # Preview the data to understand its structure\n",
" print(f\"Clinical data shape: {clinical_data.shape}\")\n",
" print(clinical_data.head())\n",
" \n",
" sample_chars = clinical_data.to_dict(orient='list')\n",
" unique_values = {i: list(set(val)) for i, val in enumerate(sample_chars.values())}\n",
" \n",
" # Print unique values to help with identification\n",
" for i, values in unique_values.items():\n",
" print(f\"Column {i}: {values[:5]}{'...' if len(values) > 5 else ''}\")\n",
"else:\n",
" # If we still can't find a clinical file, try to look for a series matrix file\n",
" matrix_files = glob.glob(os.path.join(in_cohort_dir, '*series_matrix*'))\n",
" if matrix_files:\n",
" print(f\"Found series matrix file: {matrix_files[0]}\")\n",
" try:\n",
" # Series matrix files have characteristics in the header section\n",
" with open(matrix_files[0], 'r') as f:\n",
" lines = []\n",
" for line in f:\n",
" if line.startswith('!Sample_characteristics'):\n",
" lines.append(line.strip())\n",
" if line.startswith('!series_matrix_table_begin'):\n",
" break\n",
" \n",
" if lines:\n",
" # Create a DataFrame from the sample characteristics\n",
" samples = []\n",
" for line in lines:\n",
" parts = line.split('\\t')\n",
" if len(parts) > 1:\n",
" samples.append(parts[1:])\n",
" \n",
" if samples:\n",
" # Transpose the data to match expected format\n",
" clinical_data = pd.DataFrame(samples).T\n",
" sample_chars = clinical_data.to_dict(orient='list')\n",
" unique_values = {i: list(set(val)) for i, val in enumerate(sample_chars.values())}\n",
" print(\"Extracted clinical data from series matrix file\")\n",
" except Exception as e:\n",
" print(f\"Error reading series matrix file: {e}\")\n",
"\n",
"# If we still don't have clinical data, mark the dataset as not usable\n",
"if 'clinical_data' not in locals() or clinical_data.empty:\n",
" is_gene_available = False\n",
" trait_row = None\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=(trait_row is not None)\n",
" )\n",
" print(f\"No usable clinical data found. Dataset marked as not usable.\")\n",
" exit()\n",
"\n",
"# Assume that if we have a file with .CEL or .txt extension, we likely have gene expression data\n",
"gene_files = [f for f in files if f.endswith('.CEL') or f.endswith('.txt') or \n",
" f.endswith('.csv') or 'expression' in f.lower()]\n",
"is_gene_available = len(gene_files) > 0\n",
"print(f\"Gene expression data available: {is_gene_available}\")\n",
"\n",
"# Now let's examine the clinical data to find trait, age, and gender\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# Define conversion functions\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (0/1)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" # Convert to string if it's not already\n",
" value = str(value)\n",
" # Split by colon if it exists\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" # Convert to lowercase for case-insensitive comparison\n",
" value_lower = value.lower()\n",
" \n",
" # Map values to binary (0 = control, 1 = case)\n",
" if any(term in value_lower for term in [\"healthy\", \"control\", \"normal\", \"non-atopic\"]):\n",
" return 0\n",
" elif any(term in value_lower for term in [\"eczema\", \"ad\", \"atopic dermatitis\", \"atopic\"]):\n",
" return 1\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous numeric value\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" # Convert to string if it's not already\n",
" value = str(value)\n",
" # Split by colon if it exists\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Try to extract numeric value\n",
" import re\n",
" numbers = re.findall(r'\\d+(?:\\.\\d+)?', value)\n",
" if numbers:\n",
" return float(numbers[0])\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 = female, 1 = male)\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" # Convert to string if it's not already\n",
" value = str(value)\n",
" # Split by colon if it exists\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to lowercase for case-insensitive comparison\n",
" value_lower = value.lower()\n",
" \n",
" if any(term in value_lower for term in [\"female\", \"f\", \"woman\", \"girl\"]):\n",
" return 0\n",
" elif any(term in value_lower for term in [\"male\", \"m\", \"man\", \"boy\"]):\n",
" return 1\n",
" return None\n",
"\n",
"# Examine the unique values to find trait, age, and gender data\n",
"for i, values in unique_values.items():\n",
" # Convert values to string if they aren't already\n",
" values_str = [str(v) for v in values if v is not None and not pd.isna(v)]\n",
" if not values_str:\n",
" continue\n",
" \n",
" values_joined = ' '.join(values_str).lower()\n",
" col_name = clinical_data.columns[i] if i < len(clinical_data.columns) else f\"Column {i}\"\n",
" print(f\"Examining column {i} ({col_name}): {values_str[:3]}\")\n",
" \n",
" # Look for trait-related keywords\n",
" if any(keyword in values_joined for keyword in [\"eczema\", \"ad\", \"atopic dermatitis\", \"atopic\", \"healthy\", \"control\"]):\n"
]
},
{
"cell_type": "markdown",
"id": "3f3c5e25",
"metadata": {},
"source": [
"### Step 4: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "35ca033d",
"metadata": {},
"outputs": [],
"source": [
"I'll debug the code and make sure it properly processes the GEO series matrix file to extract clinical data.\n",
"\n",
"```python\n",
"# Let's examine the dataset information by parsing the GEO series matrix file\n",
"import pandas as pd\n",
"import os\n",
"import json\n",
"import gzip\n",
"import re\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# First, let's check the available files in the cohort directory\n",
"cohort_files = os.listdir(in_cohort_dir)\n",
"print(f\"Files in the cohort directory: {cohort_files}\")\n",
"\n",
"# Parse the GEO series matrix file\n",
"matrix_file_path = os.path.join(in_cohort_dir, \"GSE61225_series_matrix.txt.gz\")\n",
"is_gene_available = False\n",
"clinical_data = None\n",
"background_info = \"\"\n",
"\n",
"if os.path.exists(matrix_file_path):\n",
" print(\"Found GEO series matrix file, parsing...\")\n",
" \n",
" # Read the gzipped file\n",
" with gzip.open(matrix_file_path, 'rt') as f:\n",
" lines = f.readlines()\n",
" \n",
" # Extract background information and sample characteristics\n",
" sample_char_dict = {}\n",
" reading_sample_char = False\n",
" sample_id_line = None\n",
" \n",
" for i, line in enumerate(lines):\n",
" line = line.strip()\n",
" \n",
" # Collect background information\n",
" if line.startswith(\"!Series_\"):\n",
" background_info += line + \"\\n\"\n",
" \n",
" # Identify sample characteristics section\n",
" if line.startswith(\"!Sample_characteristics_ch1\"):\n",
" reading_sample_char = True\n",
" char_name = line.split('\\t')[1].strip('\"')\n",
" sample_char_dict[i] = [char_name] + [v.strip('\"') for v in line.split('\\t')[2:]]\n",
" elif reading_sample_char and line.startswith(\"!Sample_\"):\n",
" if not line.startswith(\"!Sample_characteristics_ch1\"):\n",
" reading_sample_char = False\n",
" else:\n",
" char_name = line.split('\\t')[1].strip('\"')\n",
" sample_char_dict[i] = [char_name] + [v.strip('\"') for v in line.split('\\t')[2:]]\n",
" \n",
" # Identify sample ID line\n",
" if line.startswith(\"!Sample_geo_accession\"):\n",
" sample_id_line = [col.strip('\"') for col in line.split('\\t')[1:]]\n",
" \n",
" # Check if the file likely contains gene expression data\n",
" if line.startswith(\"!Platform_technology\") and \"expression\" in line.lower():\n",
" is_gene_available = True\n",
" \n",
" # Identify the start of the gene expression data section\n",
" if line.startswith(\"!series_matrix_table_begin\"):\n",
" is_gene_available = True\n",
" break\n",
" \n",
" # Create a DataFrame from sample characteristics\n",
" if sample_char_dict and sample_id_line:\n",
" clinical_data_rows = []\n",
" for row_idx, char_data in sample_char_dict.items():\n",
" if len(char_data) >= len(sample_id_line):\n",
" clinical_data_rows.append(char_data[:len(sample_id_line)])\n",
" \n",
" if clinical_data_rows:\n",
" clinical_data = pd.DataFrame(clinical_data_rows)\n",
" if sample_id_line:\n",
" clinical_data.columns = ['Description'] + sample_id_line[1:]\n",
" \n",
" print(\"Finished parsing GEO series matrix file\")\n",
"\n",
"# Display the extracted information\n",
"if clinical_data is not None:\n",
" print(\"\\nSample characteristics preview:\")\n",
" print(clinical_data.head())\n",
" \n",
" # Print unique values for each row to understand the data better\n",
" for i in range(len(clinical_data)):\n",
" unique_values = clinical_data.iloc[i, 1:].unique()\n",
" print(f\"Row {i}: {clinical_data.iloc[i, 0]}\")\n",
" print(f\"Unique values: {unique_values[:5]}{'...' if len(unique_values) > 5 else ''}\")\n",
" print()\n",
"else:\n",
" print(\"No sample characteristics found in the GEO series matrix file\")\n",
"\n",
"print(\"\\nBackground information snippet:\")\n",
"print(background_info[:500] + \"...\" if len(background_info) > 500 else background_info)\n",
"\n",
"print(f\"\\nGene expression data available: {is_gene_available}\")\n",
"\n",
"# Define conversion functions based on the data analysis\n",
"def convert_trait(value):\n",
" \"\"\"Convert eczema trait information to binary (0: healthy control, 1: eczema)\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if 'non-lesional' in value or 'non lesional' in value or 'nonlesional' in value:\n",
" return 1 # Non-lesional skin from eczema patients\n",
" elif 'lesional' in value:\n",
" return 1 # Lesional skin from eczema patients\n",
" elif 'healthy' in value or 'control' in value or 'normal' in value:\n",
" return 0 # Healthy control\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age information to continuous numeric value\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value)\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Try to extract numeric age\n",
" age_match = re.search(r'(\\d+)', value)\n",
" if age_match:\n",
" return float(age_match.group(1))\n",
" else:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender information to binary (0: female, 1: male)\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" \n",
" value = str(value).lower()\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if 'female' in value or 'f' == value.strip():\n",
" return 0\n",
" elif 'male' in value or 'm' == value.strip():\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# Based on the data analysis, set the row indices for trait, age, and gender\n",
"trait_row = None\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# If clinical data is available, determine which rows contain trait, age, and gender\n",
"if clinical_data is not None:\n",
" # Identify trait row\n",
" for i in range(len(clinical_data)):\n",
" row_label = str(clinical_data.iloc[i, 0]).lower()\n",
" unique_values = clinical_data.iloc[i, 1:].unique()\n",
" \n",
" # Check for trait information\n",
" if ('disease' in row_label or 'status' in row_label or 'diagnosis' in row_label or \n",
" 'condition' in row_label or 'skin' in row_label or 'health' in row_label or \n",
" 'lesion' in row_label or 'source' in row_label or 'sample' in row_label):\n",
" # Test if we can convert some values\n",
" test_conversions = [convert_trait(val) for val in unique_values if not pd.isna(val)]\n",
" if any(v is not None for v in test_conversions) and len(set(test_conversions) - {None}) > 1:\n",
" trait_row = i\n",
" print(f\"Found trait information in row {i}: {row_label}\")\n",
" print(f\"Unique values: {unique_values}\")\n",
" print(f\"Converted values: {test_conversions}\")\n",
" \n",
" # Check for age information\n",
" if 'age' in row_label:\n",
" # Test if we can convert some values\n",
" test_conversions = [convert_age(val) for val in unique_values if not pd.isna(val)]\n",
" if any(v is not None for v in test_conversions) and len(set(test_conversions) - {None}) > 1:\n",
" age_row = i\n",
" print(f\"Found age information in row {i}: {row_label}\")\n",
" \n",
" # Check for gender information\n",
" if 'gender' in row_label or '\n"
]
},
{
"cell_type": "markdown",
"id": "f8d74aeb",
"metadata": {},
"source": [
"### Step 5: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4d010d3c",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|