File size: 22,207 Bytes
53eb596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "41d8995f",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Endometriosis\"\n",
    "cohort = \"GSE73622\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Endometriosis\"\n",
    "in_cohort_dir = \"../../input/GEO/Endometriosis/GSE73622\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Endometriosis/GSE73622.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Endometriosis/gene_data/GSE73622.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Endometriosis/clinical_data/GSE73622.csv\"\n",
    "json_path = \"../../output/preprocess/Endometriosis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "35367f2c",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a11924f4",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5227bcd1",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b8eb6370",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset appears to have gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# Trait (Endometriosis) is available in row 0\n",
    "trait_row = 0\n",
    "# Age is available in row 3\n",
    "age_row = 3\n",
    "# Gender is not available in the sample characteristics dictionary\n",
    "gender_row = None\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert endometriosis status to binary value.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    if 'endometriosis' in value.lower():\n",
    "        return 1\n",
    "    elif 'no endometriosis' in value.lower():\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous numeric value.\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary value (0 for female, 1 for male).\"\"\"\n",
    "    # This function is included for completeness but won't be used since gender data is not available\n",
    "    if value is None:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    value = value.lower()\n",
    "    if 'female' in value or 'f' == value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# trait_row is not None, so trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# First, check the files in the directory\n",
    "import os\n",
    "import gzip\n",
    "import pandas as pd\n",
    "print(f\"Files in directory: {os.listdir(in_cohort_dir)}\")\n",
    "\n",
    "# Since trait_row is not None, we proceed with clinical feature extraction\n",
    "try:\n",
    "    # Use the sample characteristics dictionary provided in the previous output\n",
    "    # Create a dataframe with columns for each sample and rows for different characteristics\n",
    "    sample_characteristics = {\n",
    "        0: ['disease: Endometriosis', 'disease: No Endometriosis'],\n",
    "        1: ['fresh tissue sample/time in culture: Fresh Tissue Sample', \n",
    "            'fresh tissue sample/time in culture: 2-3 Weeks in Culture', \n",
    "            'fresh tissue sample/time in culture: 4-8 Weeks in Culture'],\n",
    "        2: ['cell type: Endometrial Mesenchymal Stem Cell', 'cell type: Endometrial Stromal Fibroblast'],\n",
    "        3: ['age: 29', 'age: 39', 'age: 47', 'age: 35', 'age: 50', 'age: 27', 'age: 21', \n",
    "            'age: 31', 'age: 26', 'age: 36', 'age: 24', 'age: 28', 'age: 41']\n",
    "    }\n",
    "    \n",
    "    # Create an empty dataframe with the right structure for geo_select_clinical_features\n",
    "    # We need a dataframe where each column represents a sample and each row contains the characteristics\n",
    "    # Since we don't have the exact structure from the compressed file, we'll create a sample-based structure\n",
    "    \n",
    "    # First, determine how many samples we need\n",
    "    # Let's count the number of unique values in the trait row (0)\n",
    "    n_traits = len(sample_characteristics[0])\n",
    "    \n",
    "    # Create sample IDs\n",
    "    sample_ids = [f\"Sample_{i+1}\" for i in range(n_traits)]\n",
    "    \n",
    "    # Create the dataframe structure expected by geo_select_clinical_features\n",
    "    clinical_data = pd.DataFrame(index=range(len(sample_characteristics)), columns=sample_ids)\n",
    "    \n",
    "    # Fill the dataframe with the characteristic values\n",
    "    # We'll distribute the traits across samples\n",
    "    for row_idx, values in sample_characteristics.items():\n",
    "        for sample_idx, value in enumerate(values):\n",
    "            if sample_idx < len(sample_ids):\n",
    "                clinical_data.iloc[row_idx, sample_idx] = value\n",
    "    \n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "\n",
    "    # Preview the extracted clinical features\n",
    "    clinical_preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(clinical_preview)\n",
    "\n",
    "    # Save the clinical data to CSV\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "except Exception as e:\n",
    "    print(f\"Error in clinical data extraction: {e}\")\n",
    "    # If we can't extract clinical data, we should update is_trait_available\n",
    "    is_trait_available = False\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available\n",
    "    )\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "402b0922",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c021b88a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "28693fd2",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c3f84c91",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Looking at the gene identifiers in the dataset\n",
    "# The IDs like '7896736', '7896738', etc. appear to be microarray probe IDs, not human gene symbols\n",
    "# These numeric identifiers need to be mapped to standard gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "ac3bfd3c",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "262facee",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e458c5d7",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "81c772ac",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Determine which columns contain probe IDs and gene symbols\n",
    "# Looking at the gene_annotation dataframe:\n",
    "# - 'ID' column contains probe IDs that match the gene expression data index\n",
    "# - 'gene_assignment' column contains gene symbols and other gene information\n",
    "\n",
    "# 2. Create a gene mapping dataframe\n",
    "# Extract the ID column and gene_assignment column for mapping\n",
    "gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')\n",
    "\n",
    "print(\"Gene mapping preview (first 5 rows):\")\n",
    "print(preview_df(gene_mapping))\n",
    "\n",
    "# 3. Convert probe-level measurements to gene-level expression data\n",
    "# Apply the mapping to the gene expression data to get gene-level expressions\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "print(\"Gene expression data after mapping (first 5 genes):\")\n",
    "print(preview_df(gene_data))\n",
    "\n",
    "# Save gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "03813ef6",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "20fca8af",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data file we saved earlier\n",
    "try:\n",
    "    clinical_features_df = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "    print(\"Clinical data shape:\", clinical_features_df.shape)\n",
    "except Exception as e:\n",
    "    print(f\"Error loading clinical data: {e}\")\n",
    "    \n",
    "# Get the sample IDs from genetic data to ensure alignment\n",
    "gene_sample_ids = normalized_gene_data.columns.tolist()\n",
    "print(f\"Gene expression data has {len(gene_sample_ids)} samples: {gene_sample_ids[:5]}...\")\n",
    "\n",
    "# Extract clinical information directly from the matrix file to match sample IDs\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Find the header line to get sample IDs\n",
    "    sample_ids = []\n",
    "    for line in file:\n",
    "        if line.startswith('\"ID_REF\"'):\n",
    "            headers = line.strip().split('\\t')\n",
    "            sample_ids = [h.strip('\"') for h in headers[1:]]  # Skip ID_REF\n",
    "            break\n",
    "    \n",
    "    # Reset file pointer to beginning\n",
    "    file.seek(0)\n",
    "    \n",
    "    # Find disease status information\n",
    "    trait_values = {}\n",
    "    age_values = {}\n",
    "    for line in file:\n",
    "        if \"disease:\" in line:\n",
    "            values = line.strip().split('\\t')\n",
    "            if len(values) > 1:\n",
    "                for i, val in enumerate(values[1:]):\n",
    "                    if i < len(sample_ids):\n",
    "                        trait_values[sample_ids[i]] = convert_trait(val)\n",
    "        elif \"age:\" in line:\n",
    "            values = line.strip().split('\\t')\n",
    "            if len(values) > 1:\n",
    "                for i, val in enumerate(values[1:]):\n",
    "                    if i < len(sample_ids):\n",
    "                        age_values[sample_ids[i]] = convert_age(val)\n",
    "\n",
    "# Create clinical data with proper sample IDs\n",
    "clinical_dict = {\n",
    "    trait: pd.Series(trait_values),\n",
    "    'Age': pd.Series(age_values) if age_values else None\n",
    "}\n",
    "\n",
    "clinical_features_df = pd.DataFrame(clinical_dict)\n",
    "clinical_features_df = clinical_features_df.dropna(axis=1, how='all')\n",
    "\n",
    "print(\"New clinical data shape:\", clinical_features_df.shape)\n",
    "print(\"Clinical data preview:\", clinical_features_df.head())\n",
    "\n",
    "# Save the properly structured clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Updated clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Now link the clinical and genetic data using the proper function\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "print(\"After handling missing values, shape:\", linked_data.shape)\n",
    "\n",
    "# 5. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression data from patients with and without endometriosis. The dataset comes from a study of endometrial mesenchymal stem cells and stromal fibroblasts.\"\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e0d91c23",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fe6c5ac5",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Create clinical features directly from clinical_data using the conversion functions defined earlier\n",
    "clinical_features_df = geo_select_clinical_features(\n",
    "    clinical_data, \n",
    "    trait=trait, \n",
    "    trait_row=trait_row, \n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save the clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Now link the clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n",
    "print(\"Linked data shape:\", linked_data.shape)\n",
    "\n",
    "# Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait)\n",
    "\n",
    "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 5. Conduct quality check and save the cohort information.\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=\"Dataset contains gene expression from monocytes of rheumatoid arthritis patients, with osteoporosis status included in comorbidity information.\"\n",
    ")\n",
    "\n",
    "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}