File size: 34,672 Bytes
d1894e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3c3f683e",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Gastroesophageal_reflux_disease_(GERD)\"\n",
    "cohort = \"GSE28302\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Gastroesophageal_reflux_disease_(GERD)\"\n",
    "in_cohort_dir = \"../../input/GEO/Gastroesophageal_reflux_disease_(GERD)/GSE28302\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE28302.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE28302.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/clinical_data/GSE28302.csv\"\n",
    "json_path = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bd106a12",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "93ccc943",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d7985c69",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b933bcd7",
   "metadata": {},
   "outputs": [],
   "source": [
    "I'll provide correct code for this step.\n",
    "\n",
    "```python\n",
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "import numpy as np\n",
    "\n",
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains genome-wide expression profiling\n",
    "# using Illumina whole-genome Beadarray on RNA from esophageal biopsy tissues\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Data Availability and Conversion\n",
    "\n",
    "# 2.1 Trait data - Barrett's esophagus related to GERD\n",
    "trait_row = 0  # \"tissue type\" row\n",
    "\n",
    "# Function to convert Barrett's esophagus data to binary values\n",
    "def convert_trait(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    if \":\" in str(value):\n",
    "        value = str(value).split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"barrett\" in value.lower() or \"be\" in value.lower():\n",
    "        return 1  # Barrett's esophagus\n",
    "    elif \"normal\" in value.lower() or \"squamous\" in value.lower():\n",
    "        return 0  # Normal esophageal tissue (control)\n",
    "    elif \"adenocarcinoma\" in value.lower() or \"tumor\" in value.lower():\n",
    "        return None  # Exclude cancer samples as we're focusing on GERD/Barrett's\n",
    "    return None\n",
    "\n",
    "# 2.2 Age data\n",
    "age_row = 4  # \"subject age (years)\" row\n",
    "\n",
    "def convert_age(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    if \":\" in str(value):\n",
    "        value = str(value).split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "# 2.3 Gender data\n",
    "gender_row = 3  # \"subject gender\" row\n",
    "\n",
    "def convert_gender(value):\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    if \":\" in str(value):\n",
    "        value = str(value).split(\":\", 1)[1].strip().lower()\n",
    "    \n",
    "    if \"female\" in value:\n",
    "        return 0\n",
    "    elif \"male\" in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save metadata - initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (if trait data is available)\n",
    "if trait_row is not None:\n",
    "    # Create sample characteristics dictionary\n",
    "    sample_char_dict = {\n",
    "        0: ['tissue type: normal esophageal squamous', \"tissue type: Barrett's esophagus (without dysplasia)\", 'tissue type: esophageal adenocarcinoma tumor'],\n",
    "        1: ['individual id: 53072', 'individual id: 53073', 'individual id: 54011', 'individual id: 52036', 'individual id: 53016', 'individual id: 53053', 'individual id: 53029', 'individual id: 53164', 'individual id: 52011', 'individual id: 53015', 'individual id: 54036', 'individual id: 54080', 'individual id: 52040', 'individual id: 54013', 'individual id: 53154', 'individual id: 52039', 'individual id: 54005', 'individual id: 54045', 'individual id: 54077', 'individual id: 53005', 'individual id: 53032', 'individual id: 53052', 'individual id: 54025', 'individual id: 53092', 'individual id: 53100', 'individual id: 53038', 'individual id: 53059', 'individual id: 53118', 'individual id: 53097', 'individual id: 53114'],\n",
    "        2: ['histology review type (see paper for details): slide', 'histology review type (see paper for details): path info'],\n",
    "        3: ['subject gender: female', 'subject gender: male'],\n",
    "        4: ['subject age (years): 73', 'subject age (years): 55', 'subject age (years): 66', 'subject age (years): 21', 'subject age (years): 48', 'subject age (years): 41', 'subject age (years): 31', 'subject age (years): 80', 'subject age (years): 45', 'subject age (years): 75', 'subject age (years): 60', 'subject age (years): 72', 'subject age (years): 56', 'subject age (years): 47', 'subject age (years): 78', 'subject age (years): 65', 'subject age (years): 68', 'subject age (years): 43', 'subject age (years): 67', 'subject age (years): 69', 'subject age (years): 57', 'subject age (years): 77', 'subject age (years): 61', 'subject age (years): 79', 'subject age (years): 70', 'subject age (years): 62', 'subject age (years): 71', 'subject age (years): 63', 'subject age (years): 52', 'subject age (years): 74'],\n",
    "        5: ['sample barcode: 1477791129_A', 'sample barcode: 1477791124_A', 'sample barcode: 1477791144_A', 'sample barcode: 1477791133_D', 'sample barcode: 1477791127_E', 'sample barcode: 1477791086_D', 'sample barcode: 1477791133_E', 'sample barcode: 1477791143_E', 'sample barcode: 1477791139_F', 'sample barcode: 1477791133_A', 'sample barcode: 1477791128_F', 'sample barcode: 1477791109_A', 'sample barcode: 1477791135_B', 'sample barcode: 1477791115_B', 'sample barcode: 1477791114_C', 'sample barcode: 1477791125_A', 'sample barcode: 1477791113_B', 'sample barcode: 1477791112_F', 'sample barcode: 1477791110_F', 'sample barcode: 1477791107_A', 'sample barcode: 1477791143_C', 'sample barcode: 1477791124_D', 'sample barcode: 1477791127_D', 'sample barcode: 1477791139_B', 'sample barcode: 1477791144_D', 'sample barcode: 1477791086_C', 'sample barcode: 1477791134_B', 'sample barcode: 1477791110_E', 'sample barcode: 1477791139_E', 'sample barcode: 1477791129_B'],\n",
    "        6: [np.nan, 'matching cn sample id: GSM265790', 'matching cn sample id: GSM266075', 'matching cn sample id: GSM265786', 'matching cn sample id: GSM265500', 'matching cn sample id: GSM265789', 'matching cn sample id: GSM266703', 'matching cn sample id: GSM266074', 'matching cn sample id: GSM266706', 'matching cn sample id: GSM265808', 'sample barcode: 1477791107_E', 'matching cn sample id: GSM265787', 'matching cn sample id: GSM266708', 'matching cn sample id: GSM266660', 'matching cn sample id: GSM265809', 'matching cn sample id: GSM266705', 'matching cn sample id: GSM266707', 'matching cn sample id: GSM266119', 'matching cn sample id: GSM265501', 'matching cn sample id: GSM265791', 'matching cn sample id: GSM266715', 'matching cn sample id: GSM266659', 'matching cn sample\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5351b418",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "697c70af",
   "metadata": {},
   "outputs": [],
   "source": [
    "```python\n",
    "# Import necessary libraries\n",
    "import pandas as pd\n",
    "import os\n",
    "import numpy as np\n",
    "import json\n",
    "from typing import Optional, Callable, Dict, Any, List, Union\n",
    "\n",
    "# -------- 1. First, let's check what files are available in the input directory --------\n",
    "print(f\"Checking files in: {in_cohort_dir}\")\n",
    "available_files = os.listdir(in_cohort_dir)\n",
    "print(\"Available files:\", available_files)\n",
    "\n",
    "# Look for appropriate files that might contain sample characteristics\n",
    "potential_clinical_files = [f for f in available_files if 'clinical' in f.lower() or 'sample' in f.lower() or '.soft' in f.lower()]\n",
    "print(\"Potential clinical files:\", potential_clinical_files)\n",
    "\n",
    "# If we find a SOFT file, let's use that as it contains complete information\n",
    "soft_files = [f for f in available_files if f.endswith('.soft')]\n",
    "if soft_files:\n",
    "    soft_file = os.path.join(in_cohort_dir, soft_files[0])\n",
    "    print(f\"Using SOFT file: {soft_file}\")\n",
    "    \n",
    "    # Reading the SOFT file to extract sample characteristics\n",
    "    with open(soft_file, 'r') as f:\n",
    "        lines = f.readlines()\n",
    "    \n",
    "    # Extract sample characteristics\n",
    "    sample_data = {}\n",
    "    current_sample = None\n",
    "    \n",
    "    for line in lines:\n",
    "        line = line.strip()\n",
    "        if line.startswith(\"^SAMPLE\"):\n",
    "            parts = line.split(\" = \")\n",
    "            if len(parts) > 1:\n",
    "                current_sample = parts[1]\n",
    "                sample_data[current_sample] = {}\n",
    "        elif line.startswith(\"!Sample_\") and current_sample is not None:\n",
    "            parts = line.split(\" = \")\n",
    "            if len(parts) > 1:\n",
    "                key = parts[0].replace(\"!Sample_\", \"\")\n",
    "                value = parts[1]\n",
    "                if key not in sample_data[current_sample]:\n",
    "                    sample_data[current_sample][key] = value\n",
    "                else:\n",
    "                    if not isinstance(sample_data[current_sample][key], list):\n",
    "                        sample_data[current_sample][key] = [sample_data[current_sample][key]]\n",
    "                    sample_data[current_sample][key].append(value)\n",
    "    \n",
    "    # Convert to DataFrame\n",
    "    all_keys = set()\n",
    "    for sample_dict in sample_data.values():\n",
    "        all_keys.update(sample_dict.keys())\n",
    "    \n",
    "    clinical_data = pd.DataFrame(index=list(sample_data.keys()), columns=list(all_keys))\n",
    "    for sample, sample_dict in sample_data.items():\n",
    "        for key, value in sample_dict.items():\n",
    "            clinical_data.loc[sample, key] = value\n",
    "    \n",
    "    # Transpose to have characteristics as rows\n",
    "    clinical_data = clinical_data.transpose()\n",
    "\n",
    "else:\n",
    "    # If no SOFT file, try to find a matrix file\n",
    "    matrix_files = [f for f in available_files if 'matrix' in f.lower() or 'series_matrix' in f.lower()]\n",
    "    if matrix_files:\n",
    "        matrix_file = os.path.join(in_cohort_dir, matrix_files[0])\n",
    "        print(f\"Using matrix file: {matrix_file}\")\n",
    "        \n",
    "        # Read the file to extract sample characteristics\n",
    "        with open(matrix_file, 'r') as f:\n",
    "            lines = f.readlines()\n",
    "        \n",
    "        # Extract sample characteristics\n",
    "        sample_data = {}\n",
    "        sample_ids = []\n",
    "        \n",
    "        for line in lines:\n",
    "            line = line.strip()\n",
    "            if line.startswith(\"!Sample_\"):\n",
    "                parts = line.split(\"\\t\")\n",
    "                key = parts[0].replace(\"!Sample_\", \"\")\n",
    "                values = parts[1:]\n",
    "                \n",
    "                if key == \"geo_accession\":\n",
    "                    sample_ids = values\n",
    "                    for sample_id in sample_ids:\n",
    "                        sample_data[sample_id] = {}\n",
    "                \n",
    "                if sample_ids:\n",
    "                    for i, sample_id in enumerate(sample_ids):\n",
    "                        if i < len(values):\n",
    "                            sample_data[sample_id][key] = values[i]\n",
    "        \n",
    "        # Convert to DataFrame\n",
    "        all_keys = set()\n",
    "        for sample_dict in sample_data.values():\n",
    "            all_keys.update(sample_dict.keys())\n",
    "        \n",
    "        clinical_data = pd.DataFrame(index=list(sample_data.keys()), columns=list(all_keys))\n",
    "        for sample, sample_dict in sample_data.items():\n",
    "            for key, value in sample_dict.items():\n",
    "                clinical_data.loc[sample, key] = value\n",
    "        \n",
    "        # Transpose to have characteristics as rows\n",
    "        clinical_data = clinical_data.transpose()\n",
    "    \n",
    "    else:\n",
    "        # If no suitable files found, create a dummy DataFrame and mark data as unavailable\n",
    "        print(\"No suitable files found for clinical data.\")\n",
    "        clinical_data = pd.DataFrame()\n",
    "        is_gene_available = False\n",
    "        is_trait_available = False\n",
    "        \n",
    "        # Save metadata indicating data is not available\n",
    "        validate_and_save_cohort_info(\n",
    "            is_final=False,\n",
    "            cohort=cohort,\n",
    "            info_path=json_path,\n",
    "            is_gene_available=is_gene_available,\n",
    "            is_trait_available=is_trait_available\n",
    "        )\n",
    "        \n",
    "        # Exit early\n",
    "        print(f\"Data not available for {cohort}. Metadata saved.\")\n",
    "        exit()\n",
    "\n",
    "# Display the clinical data\n",
    "print(\"Preview of clinical data:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# -------- 2. Check the unique values in each row to identify relevant information --------\n",
    "unique_values = {}\n",
    "for i in range(len(clinical_data.index)):\n",
    "    row_name = clinical_data.index[i]\n",
    "    values = clinical_data.iloc[i].unique()\n",
    "    unique_values[i] = {\n",
    "        \"name\": row_name,\n",
    "        \"values\": values,\n",
    "        \"count\": len(values)\n",
    "    }\n",
    "    print(f\"Row {i} - {row_name}: {values}\")\n",
    "\n",
    "# -------- 3. Determine availability and conversion functions based on the data --------\n",
    "\n",
    "# 3.1 Check if gene expression data is available\n",
    "# Look for platform information that suggests gene expression\n",
    "is_gene_available = True\n",
    "platform_rows = [i for i, info in unique_values.items() if \"platform\" in str(info[\"name\"]).lower()]\n",
    "if platform_rows:\n",
    "    platform_values = [str(v).lower() for v in unique_values[platform_rows[0]][\"values\"]]\n",
    "    # If platform indicates miRNA or methylation, mark gene data as unavailable\n",
    "    if any((\"mirna\" in v or \"methylation\" in v) for v in platform_values):\n",
    "        is_gene_available = False\n",
    "\n",
    "# 3.2 Identify the row indices for trait, age, and gender\n",
    "\n",
    "# For GERD (Gastroesophageal reflux disease)\n",
    "trait_row = None\n",
    "for i, info in unique_values.items():\n",
    "    row_name = str(info[\"name\"]).lower()\n",
    "    values = [str(v).lower() for v in info[\"values\"]]\n",
    "    \n",
    "    # Look for rows that might contain GERD information\n",
    "    if (\"gerd\" in row_name or \"reflux\" in row_name or \"disease\" in row_name or \n",
    "        \"diagnosis\" in row_name or \"condition\" in row_name or \"group\" in row_name):\n",
    "        if any((\"gerd\" in v or \"reflux\" in v or \"control\" in v or \"normal\" in v or \"disease\" in v) for v in values):\n",
    "            trait_row = i\n",
    "            break\n",
    "\n",
    "# If we couldn't find a direct trait row, check if we can infer from sample descriptions\n",
    "if trait_row is None:\n",
    "    for i, info in unique_values.items():\n",
    "        row_name = str(info[\"name\"]).lower()\n",
    "        values = [str(v).lower() for v in info[\"values\"]]\n",
    "        \n",
    "        if (\"title\" in row_name or \"description\" in row_name or \"characteristic\" in row_name):\n",
    "            if any((\"gerd\" in v or \"reflux\" in v or \"control\" in v or \"normal\" in v) for v in values):\n",
    "                trait_row = i\n",
    "                break\n",
    "\n",
    "# For age\n",
    "age_row = None\n",
    "for i, info in unique_values.items():\n",
    "    row_name = str(\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6556c5ab",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "c1e02fd3",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7a3810b0",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8035056c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Let's analyze the gene identifiers in the gene expression data\n",
    "\n",
    "# The identifiers appear to start with 'GI_' followed by a number and a suffix like '-S', '-A', or '-I'\n",
    "# These are not standard human gene symbols (like BRCA1, TP53, etc.)\n",
    "# These look like GenBank or other database IDs that need to be mapped to standard gene symbols\n",
    "\n",
    "# Looking at examples like:\n",
    "# GI_10047089-S\n",
    "# GI_10047091-S \n",
    "# These appear to be GenInfo Identifiers (GI numbers) which were used by NCBI\n",
    "\n",
    "# Conclusion based on biomedical knowledge:\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9506b260",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d6d76448",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c5392219",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9c46f692",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get gene annotation data from the SOFT file (need to re-extract it)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "print(f\"Gene annotation shape: {gene_annotation.shape}\")\n",
    "print(\"Gene annotation columns:\")\n",
    "print(gene_annotation.columns.tolist())\n",
    "print(\"Sample of gene annotation data:\")\n",
    "print(gene_annotation.head())\n",
    "\n",
    "# 2. Create a gene mapping dataframe using the ID and GB_ACC columns\n",
    "# ID column contains the same identifiers as in the gene expression data\n",
    "# GB_ACC contains RefSeq accessions which we'll use for gene mapping\n",
    "mapping_df = pd.DataFrame({\n",
    "    'ID': gene_annotation['ID'],\n",
    "    'Gene': gene_annotation['GB_ACC']\n",
    "})\n",
    "mapping_df = mapping_df.dropna(subset=['Gene'])  # Remove rows with missing gene information\n",
    "print(f\"Mapping dataframe shape: {mapping_df.shape}\")\n",
    "print(\"First few rows of mapping dataframe:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Define a custom function to extract gene identifiers from RefSeq accessions\n",
    "# This is needed because the standard extract_human_gene_symbols function \n",
    "# wouldn't work well with RefSeq IDs\n",
    "def extract_gene_from_refseq(refseq_id):\n",
    "    \"\"\"Extract a gene identifier from RefSeq accession without filtering\"\"\"\n",
    "    if not isinstance(refseq_id, str):\n",
    "        return []\n",
    "    \n",
    "    # For RefSeq accessions, return the accession without version number\n",
    "    if refseq_id.startswith('NM_') or refseq_id.startswith('NR_') or refseq_id.startswith('XM_'):\n",
    "        # Remove version number if present (e.g., NM_001234.2 -> NM_001234)\n",
    "        base_id = refseq_id.split('.')[0]\n",
    "        return [base_id]\n",
    "    \n",
    "    return []\n",
    "\n",
    "# 4. Apply custom mapping to convert probe-level data to gene-level data\n",
    "# First, modify the mapping DataFrame to use our custom extraction function\n",
    "mapping_df['Gene'] = mapping_df['Gene'].apply(extract_gene_from_refseq)\n",
    "mapping_df['num_genes'] = mapping_df['Gene'].apply(len)\n",
    "mapping_df = mapping_df.explode('Gene')\n",
    "mapping_df = mapping_df.dropna(subset=['Gene'])\n",
    "\n",
    "if mapping_df.empty:\n",
    "    print(\"WARNING: No valid mappings found between probes and genes\")\n",
    "    # Use probe IDs directly as fallback\n",
    "    gene_data_mapped = gene_data.copy()\n",
    "    gene_data_mapped.index = gene_data_mapped.index.map(lambda x: x.split('-')[0] if '-' in x else x)\n",
    "else:\n",
    "    # Set ID as index to allow joining with expression data\n",
    "    mapping_df.set_index('ID', inplace=True)\n",
    "    \n",
    "    # Get expression columns (exclude ID column if it exists)\n",
    "    expr_cols = [col for col in gene_data.columns if col != 'ID']\n",
    "    \n",
    "    # Join mapping with expression data\n",
    "    merged_df = mapping_df.join(gene_data)\n",
    "    \n",
    "    # Distribute expression values based on number of genes per probe\n",
    "    merged_df[expr_cols] = merged_df[expr_cols].div(merged_df['num_genes'].replace(0, 1), axis=0)\n",
    "    \n",
    "    # Sum expression values for each gene\n",
    "    gene_data_mapped = merged_df.groupby('Gene')[expr_cols].sum()\n",
    "\n",
    "# Use the mapped data\n",
    "gene_data = gene_data_mapped\n",
    "\n",
    "print(f\"Gene data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few mapped genes:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Save a sample of the gene expression data to observe its structure\n",
    "print(\"Sample of gene expression data:\")\n",
    "print(gene_data.iloc[:5, :5] if not gene_data.empty else \"No gene data available\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "83944c46",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "065687c9",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Load the gene expression data saved in step 6\n",
    "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n",
    "print(f\"Loaded gene data shape: {gene_data.shape}\")\n",
    "\n",
    "# Normalize gene symbols using NCBI Gene database\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data (overwrite the previous file with normalized data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the clinical data created in step 2\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "print(f\"Loaded clinical data shape: {clinical_df.shape}\")\n",
    "\n",
    "# If clinical_df doesn't have a proper index, fix it\n",
    "if 'Unnamed: 0' in clinical_df.columns:\n",
    "    clinical_df = clinical_df.set_index('Unnamed: 0')\n",
    "elif not clinical_df.index.name:\n",
    "    # Just in case the index needs to be set from data\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age if age_row is not None else None,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender if gender_row is not None else None\n",
    "    )\n",
    "    clinical_df = clinical_features\n",
    "\n",
    "# Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "if linked_data.shape[1] >= 5:\n",
    "    print(linked_data.iloc[:5, :5])\n",
    "else:\n",
    "    print(linked_data.head())\n",
    "\n",
    "# 3. Handle missing values\n",
    "print(\"\\nMissing values before handling:\")\n",
    "print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "if 'Age' in linked_data.columns:\n",
    "    print(f\"  Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n",
    "if 'Gender' in linked_data.columns:\n",
    "    print(f\"  Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n",
    "\n",
    "gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "if gene_cols:\n",
    "    print(f\"  Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n",
    "    print(f\"  Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n",
    "\n",
    "cleaned_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "\n",
    "# 4. Evaluate bias in trait and demographic features\n",
    "is_trait_biased = False\n",
    "if len(cleaned_data) > 0:\n",
    "    trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "    is_trait_biased = trait_biased\n",
    "else:\n",
    "    print(\"No data remains after handling missing values.\")\n",
    "    is_trait_biased = True\n",
    "\n",
    "# 5. Final validation and save\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=len(normalized_gene_data) > 0, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=cleaned_data,\n",
    "    note=f\"Dataset contains gene expression data for {trait} analysis.\"\n",
    ")\n",
    "\n",
    "# 6. Save if usable\n",
    "if is_usable and len(cleaned_data) > 0:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    cleaned_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable or empty and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}