File size: 55,189 Bytes
9fe78b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "26576afb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:14.705731Z",
"iopub.status.busy": "2025-03-25T03:42:14.705560Z",
"iopub.status.idle": "2025-03-25T03:42:14.878038Z",
"shell.execute_reply": "2025-03-25T03:42:14.877497Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Psoriasis\"\n",
"cohort = \"GSE178228\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Psoriasis\"\n",
"in_cohort_dir = \"../../input/GEO/Psoriasis/GSE178228\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Psoriasis/GSE178228.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Psoriasis/gene_data/GSE178228.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Psoriasis/clinical_data/GSE178228.csv\"\n",
"json_path = \"../../output/preprocess/Psoriasis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "388ebd5e",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "9a2ca5a3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:14.879707Z",
"iopub.status.busy": "2025-03-25T03:42:14.879553Z",
"iopub.status.idle": "2025-03-25T03:42:15.389943Z",
"shell.execute_reply": "2025-03-25T03:42:15.389436Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Ixekizumab treatment of patients with moderate-to-severe plaque psoriasis.\"\n",
"!Series_summary\t\"Objectives: To asses skin clearance and patient-reported outcomes for ixekizumab treatment. Methods: IXORA-R enrolled adults with moderate-to-severe plaque psoriasis, defined as static Physician’s Global Assessment ≥ 3, PASI ≥ 12 and involved body surface area ≥ 10%. The trial was registered with ClinicalTrials.gov (NCT03573323).\"\n",
"!Series_overall_design\t\"Eligible patients were ≥ 18 years old with chronic plaque psoriasis with a static Physician’s Global Assessment of Disease (sPGA) score of ≥ 3 (moderate), a Psoriasis Area and Severity Index (PASI) ≥ 12, and ≥ 10% body surface area involvement at screening and baseline. Psoriatic plaque skin samples were collected at baseline, week 1, week2, and week 4 after ixekizumab treatment initiation.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['visitid: 2', 'visitid: 4', 'visitid: 3', 'visitid: 5'], 1: ['treatment: Ixekizumab 80mg Q2W'], 2: ['pasi: 14.7', 'pasi: 2.9', 'pasi: 7.2', 'pasi: 15.5', 'pasi: 3', 'pasi: 8.2', 'pasi: 6.4', 'pasi: 6', 'pasi: 7.8', 'pasi: 10.3', 'pasi: 20.1', 'pasi: 3.2', 'pasi: 5', 'pasi: 8.39999999999999', 'pasi: 2.6', 'pasi: 22.8', 'pasi: 4.7', 'pasi: 13.4', 'pasi: 4.3', 'pasi: 10', 'pasi: 10.6', 'pasi: 1.6', 'pasi: 10.2', 'pasi: 4.4', 'pasi: 9.2', 'pasi: 12.6', 'pasi: 12', 'pasi: 5.8', 'pasi: 11.9', 'pasi: 12.7'], 3: ['patient_id: 57', 'patient_id: 43', 'patient_id: 14', 'patient_id: 29', 'patient_id: 50', 'patient_id: 15', 'patient_id: 54', 'patient_id: 19', 'patient_id: 45', 'patient_id: 17', 'patient_id: 40', 'patient_id: 2', 'patient_id: 51', 'patient_id: 37', 'patient_id: 41', 'patient_id: 12', 'patient_id: 35', 'patient_id: 46', 'patient_id: 24', 'patient_id: 55', 'patient_id: 8', 'patient_id: 49', 'patient_id: 32', 'patient_id: 27', 'patient_id: 34', 'patient_id: 21', 'patient_id: 5', 'patient_id: 20', 'patient_id: 47', 'patient_id: 38'], 4: ['time: Gene expression data at baseline.', 'time: Gene expression data at week 2.', 'time: Gene expression data at week 1.', 'time: Gene expression data at week 4.'], 5: ['tissue: skin'], 6: ['disease state: chronic plaque psoriasis']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "9364d150",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "58652415",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:15.391364Z",
"iopub.status.busy": "2025-03-25T03:42:15.391219Z",
"iopub.status.idle": "2025-03-25T03:42:15.402382Z",
"shell.execute_reply": "2025-03-25T03:42:15.401897Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of clinical features:\n",
"{'GSM5384796': [14.7], 'GSM5384797': [2.9], 'GSM5384798': [7.2], 'GSM5384799': [15.5], 'GSM5384800': [3.0], 'GSM5384801': [8.2], 'GSM5384802': [6.4], 'GSM5384803': [3.0], 'GSM5384804': [6.0], 'GSM5384805': [7.8], 'GSM5384806': [10.3], 'GSM5384807': [20.1], 'GSM5384808': [3.2], 'GSM5384809': [5.0], 'GSM5384810': [8.39999999999999], 'GSM5384811': [2.6], 'GSM5384812': [22.8], 'GSM5384813': [4.7], 'GSM5384814': [13.4], 'GSM5384815': [4.3], 'GSM5384816': [10.0], 'GSM5384817': [10.6], 'GSM5384818': [7.2], 'GSM5384819': [1.6], 'GSM5384820': [10.2], 'GSM5384821': [4.4], 'GSM5384822': [9.2], 'GSM5384823': [12.6], 'GSM5384824': [12.0], 'GSM5384825': [5.8], 'GSM5384826': [5.0], 'GSM5384827': [11.9], 'GSM5384828': [12.0], 'GSM5384829': [3.0], 'GSM5384830': [12.7], 'GSM5384831': [0.7], 'GSM5384832': [4.1], 'GSM5384833': [1.8], 'GSM5384834': [5.2], 'GSM5384835': [2.7], 'GSM5384836': [13.2], 'GSM5384837': [15.2], 'GSM5384838': [13.8999999999999], 'GSM5384839': [4.3], 'GSM5384840': [16.7], 'GSM5384841': [9.4], 'GSM5384842': [6.0], 'GSM5384843': [11.1], 'GSM5384844': [19.2], 'GSM5384845': [8.4], 'GSM5384846': [12.4], 'GSM5384847': [15.6], 'GSM5384848': [14.0], 'GSM5384849': [22.0], 'GSM5384850': [3.6], 'GSM5384851': [6.8], 'GSM5384852': [8.5], 'GSM5384853': [4.6], 'GSM5384854': [7.6], 'GSM5384855': [2.8], 'GSM5384856': [27.7], 'GSM5384857': [2.2], 'GSM5384858': [4.2], 'GSM5384859': [12.0], 'GSM5384860': [2.4], 'GSM5384861': [12.3999999999999], 'GSM5384862': [2.4], 'GSM5384863': [31.9], 'GSM5384864': [5.3], 'GSM5384865': [25.0], 'GSM5384866': [1.8], 'GSM5384867': [14.9], 'GSM5384868': [2.7], 'GSM5384869': [15.6], 'GSM5384870': [8.4], 'GSM5384871': [15.2], 'GSM5384872': [5.2], 'GSM5384873': [16.7], 'GSM5384874': [53.8], 'GSM5384875': [5.8], 'GSM5384876': [11.8], 'GSM5384877': [7.8], 'GSM5384878': [22.3], 'GSM5384879': [15.3], 'GSM5384880': [6.6], 'GSM5384881': [2.8], 'GSM5384882': [7.2], 'GSM5384883': [12.4], 'GSM5384884': [17.8], 'GSM5384885': [9.0], 'GSM5384886': [10.1], 'GSM5384887': [7.39999999999999], 'GSM5384888': [22.0], 'GSM5384889': [10.5], 'GSM5384890': [29.8], 'GSM5384891': [4.1], 'GSM5384892': [18.3], 'GSM5384893': [12.0], 'GSM5384894': [8.8], 'GSM5384895': [16.0], 'GSM5384896': [41.4], 'GSM5384897': [13.5], 'GSM5384898': [6.9], 'GSM5384899': [12.4], 'GSM5384900': [15.7], 'GSM5384901': [15.6], 'GSM5384902': [12.3], 'GSM5384903': [2.4], 'GSM5384904': [14.6], 'GSM5384905': [14.9], 'GSM5384906': [8.8], 'GSM5384907': [22.2], 'GSM5384908': [19.2], 'GSM5384909': [6.1], 'GSM5384910': [11.2], 'GSM5384911': [10.6], 'GSM5384912': [14.2]}\n",
"Clinical features saved to ../../output/preprocess/Psoriasis/clinical_data/GSE178228.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the backgrounds, this appears to be a gene expression dataset since it involves measuring gene expression data at different time points after ixekizumab treatment\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# For trait, key 2 contains PASI scores which indicate psoriasis severity\n",
"trait_row = 2\n",
"\n",
"# Unfortunately, age and gender data are not available in the sample characteristics\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" \"\"\"Convert PASI score to a continuous value\"\"\"\n",
" try:\n",
" # Extract the value after the colon and convert to float\n",
" if ':' in value:\n",
" val = value.split(':', 1)[1].strip()\n",
" return float(val)\n",
" return None\n",
" except:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to a continuous value (not used as age is not available)\"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to binary (not used as gender is not available)\"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Trait data availability is True if trait_row is not None\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False, \n",
" cohort=cohort,\n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features using geo_select_clinical_features\n",
" clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data, # Using the input dataframe from previous step\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" print(\"Preview of clinical features:\")\n",
" print(preview_df(clinical_features))\n",
" \n",
" # Save the clinical features to the specified output file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_features.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "98a6209c",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "a02c8f99",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:15.403604Z",
"iopub.status.busy": "2025-03-25T03:42:15.403487Z",
"iopub.status.idle": "2025-03-25T03:42:16.292088Z",
"shell.execute_reply": "2025-03-25T03:42:16.291666Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['2824546_st', '2824549_st', '2824551_st', '2824554_st', '2827992_st',\n",
" '2827995_st', '2827996_st', '2828010_st', '2828012_st', '2835442_st',\n",
" '2835447_st', '2835453_st', '2835456_st', '2835459_st', '2835461_st',\n",
" '2839509_st', '2839511_st', '2839513_st', '2839515_st', '2839517_st'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 70523 genes × 117 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "af314c02",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "e8463cc4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:16.293562Z",
"iopub.status.busy": "2025-03-25T03:42:16.293459Z",
"iopub.status.idle": "2025-03-25T03:42:16.295238Z",
"shell.execute_reply": "2025-03-25T03:42:16.294980Z"
}
},
"outputs": [],
"source": [
"# Analyze the gene identifiers\n",
"# The identifiers have the format \"XXXXXXX_st\" which appears to be probe IDs from a microarray\n",
"# These are not standard human gene symbols (like BRCA1, TP53, etc.)\n",
"# They need to be mapped to proper gene symbols for analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "bff03c14",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "0b0685c4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:16.296361Z",
"iopub.status.busy": "2025-03-25T03:42:16.296267Z",
"iopub.status.idle": "2025-03-25T03:42:31.728473Z",
"shell.execute_reply": "2025-03-25T03:42:31.728161Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of SOFT file content:\n",
"^DATABASE = GeoMiame\n",
"!Database_name = Gene Expression Omnibus (GEO)\n",
"!Database_institute = NCBI NLM NIH\n",
"!Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
"!Database_email = [email protected]\n",
"^SERIES = GSE178228\n",
"!Series_title = Ixekizumab treatment of patients with moderate-to-severe plaque psoriasis.\n",
"!Series_geo_accession = GSE178228\n",
"!Series_status = Public on Apr 10 2023\n",
"!Series_submission_date = Jun 15 2021\n",
"!Series_last_update_date = Apr 11 2023\n",
"!Series_pubmed_id = 36967086\n",
"!Series_summary = Objectives: To asses skin clearance and patient-reported outcomes for ixekizumab treatment. Methods: IXORA-R enrolled adults with moderate-to-severe plaque psoriasis, defined as static Physician’s Global Assessment ≥ 3, PASI ≥ 12 and involved body surface area ≥ 10%. The trial was registered with ClinicalTrials.gov (NCT03573323).\n",
"!Series_overall_design = Eligible patients were ≥ 18 years old with chronic plaque psoriasis with a static Physician’s Global Assessment of Disease (sPGA) score of ≥ 3 (moderate), a Psoriasis Area and Severity Index (PASI) ≥ 12, and ≥ 10% body surface area involvement at screening and baseline. Psoriatic plaque skin samples were collected at baseline, week 1, week2, and week 4 after ixekizumab treatment initiation.\n",
"!Series_type = Expression profiling by array\n",
"!Series_contributor = Scott,A,Ochsner\n",
"!Series_contributor = Neil,J,Mckenna\n",
"!Series_sample_id = GSM5384796\n",
"!Series_sample_id = GSM5384797\n",
"!Series_sample_id = GSM5384798\n",
"!Series_sample_id = GSM5384799\n",
"...\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation dataframe using default method:\n",
"Shape: (8322061, 15)\n",
"Columns: ['ID', 'probeset_id', 'seqname', 'strand', 'start', 'stop', 'total_probes', 'gene_assignment', 'mrna_assignment', 'swissprot', 'unigene', 'category', 'locus type', 'notes', 'SPOT_ID']\n",
" ID probeset_id seqname strand start stop \\\n",
"0 TC01000001.hg.1 TC01000001.hg.1 chr1 + 11869 14409 \n",
"1 TC01000002.hg.1 TC01000002.hg.1 chr1 + 29554 31109 \n",
"2 TC01000003.hg.1 TC01000003.hg.1 chr1 + 69091 70008 \n",
"\n",
" total_probes gene_assignment \\\n",
"0 49.0 NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-As... \n",
"1 60.0 ENST00000408384 // MIR1302-11 // microRNA 1302... \n",
"2 30.0 NM_001005484 // OR4F5 // olfactory receptor, f... \n",
"\n",
" mrna_assignment \\\n",
"0 NR_046018 // RefSeq // Homo sapiens DEAD/H (As... \n",
"1 ENST00000408384 // ENSEMBL // ncrna:miRNA chro... \n",
"2 NM_001005484 // RefSeq // Homo sapiens olfacto... \n",
"\n",
" swissprot \\\n",
"0 NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 //... \n",
"1 --- \n",
"2 NM_001005484 // Q8NH21 /// ENST00000335137 // ... \n",
"\n",
" unigene category locus type \\\n",
"0 NR_046018 // Hs.714157 // testis| normal| adul... main Coding \n",
"1 ENST00000469289 // Hs.622486 // eye| normal| a... main Coding \n",
"2 NM_001005484 // Hs.554500 // --- /// ENST00000... main Coding \n",
"\n",
" notes SPOT_ID \n",
"0 --- chr1(+):11869-14409 \n",
"1 --- chr1(+):29554-31109 \n",
"2 --- chr1(+):69091-70008 \n",
"\n",
"Searching for platform annotation section in SOFT file...\n",
"^PLATFORM = GPL17586\n",
"!platform_table_begin\n",
"ID\tprobeset_id\tseqname\tstrand\tstart\tstop\ttotal_probes\tgene_assignment\tmrna_assignment\tswissprot\tunigene\tcategory\tlocus type\tnotes\tSPOT_ID\n",
"TC01000001.hg.1\tTC01000001.hg.1\tchr1\t+\t11869\t14409\t49\tNR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000456328 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102\tNR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aaa.3 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxq.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc010nxr.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0\tNR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// ENST00000456328 // B7ZGX0 /// ENST00000456328 // B7ZGX2 /// ENST00000456328 // B7ZGX3 /// ENST00000456328 // B7ZGX7 /// ENST00000456328 // B7ZGX8 /// ENST00000456328 // Q6ZU42\tNR_046018 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.719844 // brain| testis| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000456328 // Hs.618434 // testis| normal\tmain\tCoding\t---\tchr1(+):11869-14409\n",
"TC01000002.hg.1\tTC01000002.hg.1\tchr1\t+\t29554\t31109\t60\tENST00000408384 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000408384 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000408384 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000408384 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000469289 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000469289 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000469289 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000469289 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278 /// OTTHUMT00000002841 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002841 // RP11-34P13.3 // NULL // --- // --- /// OTTHUMT00000002840 // OTTHUMG00000000959 // NULL // --- // --- /// OTTHUMT00000002840 // RP11-34P13.3 // NULL // --- // ---\tENST00000408384 // ENSEMBL // ncrna:miRNA chromosome:GRCh37:1:30366:30503:1 gene:ENSG00000221311 gene_biotype:miRNA transcript_biotype:miRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000469289 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:30267:31109:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000473358 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002841 // Havana transcript // cdna:all chromosome:VEGA52:1:30267:31109:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000002840 // Havana transcript // cdna:all chromosome:VEGA52:1:29554:31097:1 Gene:OTTHUMG00000000959 // chr1 // 100 // 100 // 0 // --- // 0\t---\tENST00000469289 // Hs.622486 // eye| normal| adult /// ENST00000469289 // Hs.729632 // testis| normal /// ENST00000469289 // Hs.742718 // testis /// ENST00000473358 // Hs.622486 // eye| normal| adult /// ENST00000473358 // Hs.729632 // testis| normal /// ENST00000473358 // Hs.742718 // testis\tmain\tCoding\t---\tchr1(+):29554-31109\n",
"TC01000003.hg.1\tTC01000003.hg.1\tchr1\t+\t69091\t70008\t30\tNM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// OTTHUMT00000003223 // OR4F5 // NULL // --- // ---\tNM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 0 // --- // 0 /// uc001aal.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000003223 // Havana transcript // cdna:all chromosome:VEGA52:1:69091:70008:1 Gene:OTTHUMG00000001094 // chr1 // 100 // 100 // 0 // --- // 0\tNM_001005484 // Q8NH21 /// ENST00000335137 // Q8NH21\tNM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---\tmain\tCoding\t---\tchr1(+):69091-70008\n",
"TC01000004.hg.1\tTC01000004.hg.1\tchr1\t+\t160446\t161525\t30\tOTTHUMT00000007169 // OTTHUMG00000002525 // NULL // --- // --- /// OTTHUMT00000007169 // RP11-34P13.9 // NULL // --- // ---\tENST00000496488 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:160446:161525:1 gene:ENSG00000241599 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000007169 // Havana transcript // cdna:all chromosome:VEGA52:1:160446:161525:1 Gene:OTTHUMG00000002525 // chr1 // 100 // 100 // 0 // --- // 0\t---\t---\tmain\tCoding\t---\tchr1(+):160446-161525\n",
"TC01000005.hg.1\tTC01000005.hg.1\tchr1\t+\t317811\t328581\t191\tNR_028322 // LOC100132287 // uncharacterized LOC100132287 // 1p36.33 // 100132287 /// NR_028327 // LOC100133331 // uncharacterized LOC100133331 // 1p36.33 // 100133331 /// ENST00000425496 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000425496 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000425496 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000425496 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000425496 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// NR_028325 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// OTTHUMT00000346878 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346878 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346879 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346879 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346880 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346880 // RP4-669L17.10 // NULL // --- // --- /// OTTHUMT00000346881 // OTTHUMG00000156968 // NULL // --- // --- /// OTTHUMT00000346881 // RP4-669L17.10 // NULL // --- // ---\tNR_028322 // RefSeq // Homo sapiens uncharacterized LOC100132287 (LOC100132287), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028327 // RefSeq // Homo sapiens uncharacterized LOC100133331 (LOC100133331), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000425496 // ENSEMBL // ensembl:lincRNA chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0 /// ENST00000426316 // ENSEMBL // [retired] cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 100 // 0 // --- // 0 /// NR_028325 // RefSeq // Homo sapiens uncharacterized LOC100132062 (LOC100132062), non-coding RNA. // chr1 // 100 // 100 // 0 // --- // 0 /// uc009vjk.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oeh.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// uc021oei.1 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346906 // Havana transcript // [retired] cdna:all chromosome:VEGA50:1:317811:328455:1 Gene:OTTHUMG00000156972 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346878 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:321056:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346879 // Havana transcript // cdna:all chromosome:VEGA52:1:320162:324461:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346880 // Havana transcript // cdna:all chromosome:VEGA52:1:317720:324873:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0 /// OTTHUMT00000346881 // Havana transcript // cdna:all chromosome:VEGA52:1:322672:324955:1 Gene:OTTHUMG00000156968 // chr1 // 100 // 100 // 0 // --- // 0\tNR_028325 // B4DYM5 /// NR_028325 // B4E0H4 /// NR_028325 // B4E3X0 /// NR_028325 // B4E3X2 /// NR_028325 // Q6ZQS4\tNR_028322 // Hs.446409 // adrenal gland| blood| bone| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| lymph node| mouth| pharynx| placenta| prostate| skin| testis| thymus| thyroid| uterus| bladder carcinoma| chondrosarcoma| colorectal tumor| germ cell tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| primitive neuroectodermal tumor of the CNS| uterine tumor|embryoid body| blastocyst| fetus| neonate| adult /// NR_028327 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000425496 // Hs.744556 // mammary gland| normal| adult /// ENST00000425496 // Hs.660700 // eye| placenta| testis| normal| adult /// ENST00000425496 // Hs.518952 // blood| brain| intestine| lung| mammary gland| mouth| muscle| pharynx| placenta| prostate| spleen| testis| thymus| thyroid| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| prostate cancer| fetus| adult /// ENST00000425496 // Hs.742131 // testis| normal| adult /// ENST00000425496 // Hs.636102 // uterus| uterine tumor /// ENST00000425496 // Hs.646112 // brain| intestine| larynx| lung| mouth| prostate| testis| thyroid| colorectal tumor| head and neck tumor| lung tumor| normal| prostate cancer| adult /// ENST00000425496 // Hs.647795 // brain| lung| lung tumor| adult /// ENST00000425496 // Hs.684307 // --- /// ENST00000425496 // Hs.720881 // testis| normal /// ENST00000425496 // Hs.729353 // brain| lung| placenta| testis| trachea| lung tumor| normal| fetus| adult /// ENST00000425496 // Hs.735014 // ovary| ovarian tumor /// NR_028325 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| kidney tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult\tmain\tCoding\t2 retired transcript(s) from ENSEMBL, Havana transcript\tchr1(+):317811-328581\n",
"TC01000006.hg.1\tTC01000006.hg.1\tchr1\t+\t321084\t321115\t8\t--- // --- // DQ597235,uc001aaq.2 // --- // ---\tuc001aaq.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0\t---\t---\tmain\tCoding\t---\tchr1(+):321084-321115\n",
"TC01000007.hg.1\tTC01000007.hg.1\tchr1\t+\t321146\t321207\t30\t--- // --- // DQ599768,uc001aar.2 // --- // ---\tuc001aar.2 // UCSC Genes // --- // chr1 // 100 // 100 // 0 // --- // 0\t---\t---\tmain\tCoding\t---\tchr1(+):321146-321207\n",
"TC01000008.hg.1\tTC01000008.hg.1\tchr1\t+\t334140\t342806\t30\tENST00000455464 // LOC101060495 // uncharacterized LOC101060495 // --- // 101060495 /// ENST00000455464 // LOC101060494 // uncharacterized LOC101060494 // --- // 101060494 /// ENST00000455464 // LOC101059936 // uncharacterized LOC101059936 // --- // 101059936 /// ENST00000455464 // LOC100996502 // uncharacterized LOC100996502 // --- // 100996502 /// ENST00000455464 // LOC100996328 // uncharacterized LOC100996328 // --- // 100996328 /// ENST00000455464 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894\tENST00000455464 // ENSEMBL // havana:lincRNA chromosome:GRCh37:1:322078:342806:1 gene:ENSG00000237094 gene_biotype:lincRNA transcript_biotype:lincRNA // chr1 // 100 // 100 // 0 // --- // 0\t---\tENST00000455464 // Hs.744556 // mammary gland| normal| adult /// ENST00000455464 // Hs.660700 // eye| placenta| testis| normal| adult /// ENST00000455464 // Hs.518952 // blood| brain| intestine| lung| mammary gland| mouth| muscle| pharynx| placenta| prostate| spleen| testis| thymus| thyroid| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| prostate cancer| fetus| adult /// ENST00000455464 // Hs.742131 // testis| normal| adult /// ENST00000455464 // Hs.636102 // uterus| uterine tumor /// ENST00000455464 // Hs.646112 // brain| intestine| larynx| lung| mouth| prostate| testis| thyroid| colorectal tumor| head and neck tumor| lung tumor| normal| prostate cancer| adult /// ENST00000455464 // Hs.647795 // brain| lung| lung tumor| adult /// ENST00000455464 // Hs.684307 // --- /// ENST00000455464 // Hs.720881 // testis| normal /// ENST00000455464 // Hs.729353 // brain| lung| placenta| testis| trachea| lung tumor| normal| fetus| adult /// ENST00000455464 // Hs.735014 // ovary| ovarian tumor\tmain\tCoding\t---\tchr1(+):334140-342806\n",
"TC01000009.hg.1\tTC01000009.hg.1\tchr1\t+\t367640\t368634\t28\tNM_001005221 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// BC137547 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// BC137547 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// BC137547 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// NM_001005277 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// BC137568 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683 /// BC137568 // OR4F16 // olfactory receptor, family 4, subfamily F, member 16 // 1p36.33 // 81399 /// BC137568 // OR4F29 // olfactory receptor, family 4, subfamily F, member 29 // 1p36.33 // 729759 /// NM_001005224 // OR4F3 // olfactory receptor, family 4, subfamily F, member 3 // 5q35.3 // 26683\tNM_001005221 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 29 (OR4F29), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// BC137547 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 3, mRNA (cDNA clone MGC:169170 IMAGE:9021547), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// NM_001005277 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 16 (OR4F16), mRNA. // chr1 // 100 // 100 // 0 // --- // 0 /// BC137568 // GenBank // Homo sapiens olfactory receptor, family 4, subfamily F, member 3, mRNA (cDNA clone MGC:169191 IMAGE:9021568), complete cds. // chr1 // 100 // 100 // 0 // --- // 0 /// NM_001005224 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 3 (OR4F3), mRNA. // chr1 // 100 // 100 // 0 // --- // 0\tNM_001005221 // Q6IEY1 /// BC137547 // Q6IEY1 /// BC137547 // Q6IFP3 /// NM_001005277 // Q6IEY1 /// NM_001005277 // Q6IFP3 /// BC137568 // Q6IFP3 /// BC137568 // Q6IEY1 /// NM_001005224 // Q6IEY1\tNM_001005221 // Hs.722724 // --- /// BC137547 // Hs.722724 // --- /// BC137547 // Hs.632360 // muscle| normal /// NM_001005277 // Hs.632360 // muscle| normal /// BC137568 // Hs.722724 // --- /// BC137568 // Hs.632360 // muscle| normal /// NM_001005224 // Hs.722724 // ---\tmain\tCoding\t---\tchr1(+):367640-368634\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Inspect the SOFT file structure to understand the annotation format\n",
"# Read the first few lines of the SOFT file to examine its structure\n",
"import gzip\n",
"print(\"Preview of SOFT file content:\")\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" for i, line in enumerate(f):\n",
" print(line.strip())\n",
" if i >= 20: # Print first 20 lines to understand structure\n",
" break\n",
"print(\"...\\n\")\n",
"\n",
"# 3. Try different approaches to extract gene annotation data\n",
"# First, let's try the default method to see what's actually in the file\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"print(\"Gene annotation dataframe using default method:\")\n",
"print(f\"Shape: {gene_annotation.shape}\")\n",
"print(f\"Columns: {gene_annotation.columns.tolist()}\")\n",
"print(gene_annotation.head(3))\n",
"\n",
"# 4. Check if there's another section in the file that might contain the mapping\n",
"# Look for platform annotation information in the SOFT file\n",
"print(\"\\nSearching for platform annotation section in SOFT file...\")\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" platform_lines = []\n",
" capture = False\n",
" for i, line in enumerate(f):\n",
" if \"^PLATFORM\" in line:\n",
" capture = True\n",
" platform_lines.append(line.strip())\n",
" elif capture and line.startswith(\"!platform_table_begin\"):\n",
" platform_lines.append(line.strip())\n",
" for j in range(10): # Capture the next 10 lines to understand the table structure\n",
" try:\n",
" platform_line = next(f).strip()\n",
" platform_lines.append(platform_line)\n",
" except StopIteration:\n",
" break\n",
" break\n",
" \n",
" print(\"\\n\".join(platform_lines))\n",
"\n",
"# Maintain gene availability status as True based on previous steps\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "e068a91a",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7d7e6815",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:31.730444Z",
"iopub.status.busy": "2025-03-25T03:42:31.730286Z",
"iopub.status.idle": "2025-03-25T03:42:49.335460Z",
"shell.execute_reply": "2025-03-25T03:42:49.334881Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Platform information: !Series_platform_id = GPL17586\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Number of common probe IDs between expression data and annotation: 70523\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Sample of mapping dataframe before extraction:\n",
" ID Gene\n",
"0 TC01000001.hg.1 NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-As...\n",
"1 TC01000002.hg.1 ENST00000408384 // MIR1302-11 // microRNA 1302...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Sample of mapping after extracting gene symbols:\n",
" ID Gene\n",
"0 TC01000001.hg.1 [DDX11L1, DEAD, DDX11L5]\n",
"1 TC01000002.hg.1 [MIR1302-11, MIR1302-10, MIR1302-9, MIR1302-2,...\n",
"2 TC01000003.hg.1 [OR4F5, NULL]\n",
"3 TC01000004.hg.1 [NULL, RP11-34P13]\n",
"4 TC01000005.hg.1 [NULL, RP4-669L17]\n",
"\n",
"Converting probe measurements to gene expression data...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression dataframe shape: (0, 117)\n",
"Sample of gene expression data:\n",
"Empty gene data frame\n",
"\n",
"Warning: Gene expression data is empty after mapping.\n",
"Using original probe IDs as fallback...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"NOTE: Gene mapping resulted in empty data. Using original probe IDs which may affect interpretability of results.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Psoriasis/gene_data/GSE178228.csv\n",
"Gene data available: True (with 70523 features)\n"
]
}
],
"source": [
"# First, let's get more information about the dataset platform from the SOFT file\n",
"soft_platform_info = None\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" for line in f:\n",
" if line.startswith('!Series_platform_id'):\n",
" soft_platform_info = line.strip()\n",
" break\n",
"\n",
"print(f\"Platform information: {soft_platform_info}\")\n",
"\n",
"# Check for matching probe IDs between expression data and annotation\n",
"common_ids = set(gene_data.index) & set(gene_annotation['ID'])\n",
"print(f\"Number of common probe IDs between expression data and annotation: {len(common_ids)}\")\n",
"\n",
"# Since we have matches, let's filter the annotation to only include these probes\n",
"filtered_annotation = gene_annotation[gene_annotation['ID'].isin(gene_data.index)].copy()\n",
"\n",
"# Create mapping dataframe with probe IDs and gene symbols extracted from gene_assignment\n",
"mapping_df = filtered_annotation[['ID', 'gene_assignment']].copy()\n",
"mapping_df = mapping_df.rename(columns={'gene_assignment': 'Gene'})\n",
"\n",
"# Display a sample of the mapping dataframe before processing\n",
"print(\"\\nSample of mapping dataframe before extraction:\")\n",
"print(mapping_df.head(2))\n",
"\n",
"# Apply the extract_human_gene_symbols function to extract gene symbols\n",
"mapping_df['Gene'] = mapping_df['Gene'].apply(extract_human_gene_symbols)\n",
"\n",
"# Check if we got any gene symbols\n",
"sample_with_genes = mapping_df[mapping_df['Gene'].apply(lambda x: len(x) > 0 if isinstance(x, list) else False)].head(5)\n",
"print(\"\\nSample of mapping after extracting gene symbols:\")\n",
"print(sample_with_genes)\n",
"\n",
"# Apply the gene mapping to convert probe-level measurements to gene expression\n",
"print(\"\\nConverting probe measurements to gene expression data...\")\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Check the shape of the resulting gene expression dataframe\n",
"print(f\"Gene expression dataframe shape: {gene_data.shape}\")\n",
"print(\"Sample of gene expression data:\")\n",
"print(gene_data.head(3) if not gene_data.empty else \"Empty gene data frame\")\n",
"\n",
"# If we have extracted gene symbols correctly, normalize them\n",
"if not gene_data.empty:\n",
" gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"\\nFinal gene expression data shape after normalization: {gene_data.shape}\")\n",
" print(\"Sample of normalized gene expression data:\")\n",
" print(gene_data.head(3))\n",
"else:\n",
" print(\"\\nWarning: Gene expression data is empty after mapping.\")\n",
" # If mapping failed, use the original probe IDs\n",
" print(\"Using original probe IDs as fallback...\")\n",
" gene_data = get_genetic_data(matrix_file)\n",
" \n",
" # Create a note about the mapping issue\n",
" mapping_note = (\"Gene mapping resulted in empty data. Using original probe IDs \"\n",
" \"which may affect interpretability of results.\")\n",
" print(f\"\\nNOTE: {mapping_note}\")\n",
"\n",
"# Save gene data to file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n",
"\n",
"# Confirm gene data is still available\n",
"is_gene_available = gene_data.shape[0] > 0\n",
"print(f\"Gene data available: {is_gene_available} (with {gene_data.shape[0]} features)\")\n"
]
},
{
"cell_type": "markdown",
"id": "1baa3b10",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "24ac4a62",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T03:42:49.336895Z",
"iopub.status.busy": "2025-03-25T03:42:49.336762Z",
"iopub.status.idle": "2025-03-25T03:42:49.931460Z",
"shell.execute_reply": "2025-03-25T03:42:49.930980Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: 0 genes × 117 samples\n",
"Normalized gene expression data saved to ../../output/preprocess/Psoriasis/gene_data/GSE178228.csv\n",
"Extracting clinical features from the original source...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracted clinical features preview:\n",
"{'GSM5384796': [14.7], 'GSM5384797': [2.9], 'GSM5384798': [7.2], 'GSM5384799': [15.5], 'GSM5384800': [3.0], 'GSM5384801': [8.2], 'GSM5384802': [6.4], 'GSM5384803': [3.0], 'GSM5384804': [6.0], 'GSM5384805': [7.8], 'GSM5384806': [10.3], 'GSM5384807': [20.1], 'GSM5384808': [3.2], 'GSM5384809': [5.0], 'GSM5384810': [8.39999999999999], 'GSM5384811': [2.6], 'GSM5384812': [22.8], 'GSM5384813': [4.7], 'GSM5384814': [13.4], 'GSM5384815': [4.3], 'GSM5384816': [10.0], 'GSM5384817': [10.6], 'GSM5384818': [7.2], 'GSM5384819': [1.6], 'GSM5384820': [10.2], 'GSM5384821': [4.4], 'GSM5384822': [9.2], 'GSM5384823': [12.6], 'GSM5384824': [12.0], 'GSM5384825': [5.8], 'GSM5384826': [5.0], 'GSM5384827': [11.9], 'GSM5384828': [12.0], 'GSM5384829': [3.0], 'GSM5384830': [12.7], 'GSM5384831': [0.7], 'GSM5384832': [4.1], 'GSM5384833': [1.8], 'GSM5384834': [5.2], 'GSM5384835': [2.7], 'GSM5384836': [13.2], 'GSM5384837': [15.2], 'GSM5384838': [13.8999999999999], 'GSM5384839': [4.3], 'GSM5384840': [16.7], 'GSM5384841': [9.4], 'GSM5384842': [6.0], 'GSM5384843': [11.1], 'GSM5384844': [19.2], 'GSM5384845': [8.4], 'GSM5384846': [12.4], 'GSM5384847': [15.6], 'GSM5384848': [14.0], 'GSM5384849': [22.0], 'GSM5384850': [3.6], 'GSM5384851': [6.8], 'GSM5384852': [8.5], 'GSM5384853': [4.6], 'GSM5384854': [7.6], 'GSM5384855': [2.8], 'GSM5384856': [27.7], 'GSM5384857': [2.2], 'GSM5384858': [4.2], 'GSM5384859': [12.0], 'GSM5384860': [2.4], 'GSM5384861': [12.3999999999999], 'GSM5384862': [2.4], 'GSM5384863': [31.9], 'GSM5384864': [5.3], 'GSM5384865': [25.0], 'GSM5384866': [1.8], 'GSM5384867': [14.9], 'GSM5384868': [2.7], 'GSM5384869': [15.6], 'GSM5384870': [8.4], 'GSM5384871': [15.2], 'GSM5384872': [5.2], 'GSM5384873': [16.7], 'GSM5384874': [53.8], 'GSM5384875': [5.8], 'GSM5384876': [11.8], 'GSM5384877': [7.8], 'GSM5384878': [22.3], 'GSM5384879': [15.3], 'GSM5384880': [6.6], 'GSM5384881': [2.8], 'GSM5384882': [7.2], 'GSM5384883': [12.4], 'GSM5384884': [17.8], 'GSM5384885': [9.0], 'GSM5384886': [10.1], 'GSM5384887': [7.39999999999999], 'GSM5384888': [22.0], 'GSM5384889': [10.5], 'GSM5384890': [29.8], 'GSM5384891': [4.1], 'GSM5384892': [18.3], 'GSM5384893': [12.0], 'GSM5384894': [8.8], 'GSM5384895': [16.0], 'GSM5384896': [41.4], 'GSM5384897': [13.5], 'GSM5384898': [6.9], 'GSM5384899': [12.4], 'GSM5384900': [15.7], 'GSM5384901': [15.6], 'GSM5384902': [12.3], 'GSM5384903': [2.4], 'GSM5384904': [14.6], 'GSM5384905': [14.9], 'GSM5384906': [8.8], 'GSM5384907': [22.2], 'GSM5384908': [19.2], 'GSM5384909': [6.1], 'GSM5384910': [11.2], 'GSM5384911': [10.6], 'GSM5384912': [14.2]}\n",
"Clinical data shape: (1, 117)\n",
"Clinical features saved to ../../output/preprocess/Psoriasis/clinical_data/GSE178228.csv\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (117, 1)\n",
"Error: Linked data has insufficient samples or features.\n",
"Abnormality detected in the cohort: GSE178228. Preprocessing failed.\n",
"Dataset deemed not usable due to linking failure.\n"
]
}
],
"source": [
"# 1. Check if gene data is available after mapping\n",
"if gene_data.shape[0] == 0:\n",
" print(\"Error: Gene expression matrix is empty after mapping.\")\n",
" # Mark the dataset as not usable due to lack of gene expression data\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=False, # No usable gene data\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"Failed to map probe IDs to gene symbols. The annotation format may not be compatible with the extraction methods.\"\n",
" )\n",
" print(\"Dataset deemed not usable due to lack of gene expression data.\")\n",
"else:\n",
" # Only proceed with normalization if we have gene data\n",
" print(\"Normalizing gene symbols...\")\n",
" gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
" print(f\"Gene data shape after normalization: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
"\n",
" # Save the normalized gene data\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" gene_data_normalized.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
" \n",
" # Extract clinical features from the original data source\n",
" print(\"Extracting clinical features from the original source...\")\n",
" # Get background information and clinical data again\n",
" background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
" clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
" background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" print(\"Extracted clinical features preview:\")\n",
" print(preview_df(selected_clinical_df))\n",
" print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
" \n",
" # Save the extracted clinical features\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
" \n",
" # Link clinical and genetic data\n",
" print(\"Linking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data_normalized)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" \n",
" # Check if the linked data has adequate data\n",
" if linked_data.shape[0] == 0 or linked_data.shape[1] <= 4: # 4 is an arbitrary small number\n",
" print(\"Error: Linked data has insufficient samples or features.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=linked_data,\n",
" note=\"Failed to properly link gene expression data with clinical features.\"\n",
" )\n",
" print(\"Dataset deemed not usable due to linking failure.\")\n",
" else:\n",
" # Handle missing values systematically\n",
" print(\"Handling missing values...\")\n",
" linked_data_clean = handle_missing_values(linked_data, trait_col=trait)\n",
" print(f\"Data shape after handling missing values: {linked_data_clean.shape}\")\n",
" \n",
" # Check if there are still samples after missing value handling\n",
" if linked_data_clean.shape[0] == 0:\n",
" print(\"Error: No samples remain after handling missing values.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"All samples were removed during missing value handling.\"\n",
" )\n",
" print(\"Dataset deemed not usable as all samples were filtered out.\")\n",
" else:\n",
" # Check if the dataset is biased\n",
" print(\"\\nChecking for bias in feature variables:\")\n",
" is_biased, linked_data_final = judge_and_remove_biased_features(linked_data_clean, trait)\n",
" \n",
" # Conduct final quality validation\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data_final,\n",
" note=\"Dataset contains gene expression data for Crohn's Disease patients, examining response to Infliximab treatment.\"\n",
" )\n",
" \n",
" # Save linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data_final.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" print(f\"Final dataset shape: {linked_data_final.shape}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|