File size: 28,377 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "545c2632",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:42.070848Z",
     "iopub.status.busy": "2025-03-25T06:39:42.070729Z",
     "iopub.status.idle": "2025-03-25T06:39:42.233421Z",
     "shell.execute_reply": "2025-03-25T06:39:42.233035Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Asthma\"\n",
    "cohort = \"GSE123086\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Asthma\"\n",
    "in_cohort_dir = \"../../input/GEO/Asthma/GSE123086\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Asthma/GSE123086.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Asthma/gene_data/GSE123086.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Asthma/clinical_data/GSE123086.csv\"\n",
    "json_path = \"../../output/preprocess/Asthma/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "97b90f91",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "0f58458f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:42.234936Z",
     "iopub.status.busy": "2025-03-25T06:39:42.234785Z",
     "iopub.status.idle": "2025-03-25T06:39:42.469400Z",
     "shell.execute_reply": "2025-03-25T06:39:42.468992Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases [study of 13 diseases]\"\n",
      "!Series_summary\t\"We conducted prospective clinical studies to validate the importance of CD4+ T cells in 13 diseases from the following ICD-10-CM chapters: Neoplasms (breast cancer, chronic lymphocytic leukemia); endocrine, nutritional and metabolic diseases (type I diabetes, obesity); diseases of the circulatory system (atherosclerosis); diseases of the respiratory system (acute tonsillitis, influenza, seasonal allergic rhinitis, asthma); diseases of the digestive system (Crohn’s disease [CD], ulcerative colitis [UC]); and diseases of the skin and subcutaneous tissue (atopic eczema, psoriatic diseases).\"\n",
      "!Series_summary\t\"Study participants were recruited by clinical specialists based on diagnostic criteria defined by organizations representing each specialist’s discipline. Age and gender matched healthy controls (n = 127 and 39, respectively) were recruited in the Southeast region of Sweden from outpatient clinics at the University Hospital, Linköping; Ryhov County Hospital, Jönköping, a primary health care center in Jönköping; and a medical specialist unit for children in Värnamo. Study participants represented both urban and rural populations with an age range of 8–94 years. Patients with type I diabetes and obesity had an age range of 8–18 years. 12 patients had more than one diagnosis.\"\n",
      "!Series_overall_design\t\"Total RNA was extracted using the AllPrep DNA/RNA Micro kit (Qiagen, Hilden, Germany; cat. no. 80284) according to the manufacturer’s instructions. RNA concentration and integrity were evaluated using the Agilent RNA 6000 Nano Kit (Agilent Technologies, Santa Clara, California, USA; cat. no. 5067-1511) on an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, California, USA). Microarrays were then further computationally processed as described in One-Color Microarray-Based Gene Expression Analysis Low Input Quick Amp Labeling protocol (Agilent Technologies, Santa Clara, California, USA).\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: CD4+ T cells'], 1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', 'primary diagnosis: BREAST_CANCER', 'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'primary diagnosis: CROHN_DISEASE', 'primary diagnosis: ATOPIC_ECZEMA', 'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', 'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', 'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', 'primary diagnosis: TYPE_1_DIABETES', 'primary diagnosis: ACUTE_TONSILLITIS', 'primary diagnosis: ULCERATIVE_COLITIS'], 2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', 'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', 'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', 'diagnosis2: OBESITY'], 3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', 'age: 41', 'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', 'age: 74', 'age: 69', 'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', 'age: 72', 'age: 66', 'age: 36', 'age: 45', 'age: 65', 'age: 48', 'age: 50', 'age: 24', 'age: 42'], 4: [nan, 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', 'age: 16', 'age: 12', 'age: 27']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d9bd2b48",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "87551b3b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:42.470665Z",
     "iopub.status.busy": "2025-03-25T06:39:42.470543Z",
     "iopub.status.idle": "2025-03-25T06:39:42.475901Z",
     "shell.execute_reply": "2025-03-25T06:39:42.475515Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully identified data availability for GSE123086:\n",
      "- Trait data available at row 1\n",
      "- Age data available at row 3\n",
      "- Gender data available at row 2\n",
      "Clinical data processing will be performed in subsequent steps.\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains gene expression data from CD4+ T cells\n",
    "# analyzed through microarrays (Agilent)\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# For the trait (Asthma)\n",
    "# Looking at index 1 for primary diagnosis, which includes ASTHMA\n",
    "trait_row = 1\n",
    "\n",
    "# For age\n",
    "# Looking at indexes 3 and 4, which contain age values\n",
    "age_row = 3  # Primary age row\n",
    "\n",
    "# For gender\n",
    "# Looking at indices 2 and 3, both contain gender information\n",
    "gender_row = 2  # Primary gender row\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to binary (0=control, 1=Asthma)\"\"\"\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value part after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Check if the value indicates Asthma\n",
    "    if \"ASTHMA\" in value.upper():\n",
    "        return 1\n",
    "    elif \"HEALTHY_CONTROL\" in value.upper():\n",
    "        return 0\n",
    "    else:\n",
    "        return None  # Other diseases\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age value to continuous numeric value\"\"\"\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value part after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender value to binary (0=female, 1=male)\"\"\"\n",
    "    if value is None or pd.isna(value):\n",
    "        return None\n",
    "    \n",
    "    # Extract value part after colon if present\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    if \"MALE\" in value.upper():\n",
    "        return 1\n",
    "    elif \"FEMALE\" in value.upper():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering on dataset usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # For this step, we'd typically load clinical_data from a file\n",
    "    # But since we don't have access to that file directly,\n",
    "    # we'll create a placeholder for now, and the actual processing\n",
    "    # will be done in a subsequent step once we have the actual data\n",
    "    \n",
    "    # Simply log that we've completed the identification phase\n",
    "    print(f\"Successfully identified data availability for {cohort}:\")\n",
    "    print(f\"- Trait data available at row {trait_row}\")\n",
    "    print(f\"- Age data available at row {age_row}\")\n",
    "    print(f\"- Gender data available at row {gender_row}\")\n",
    "    print(\"Clinical data processing will be performed in subsequent steps.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "908c394e",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "14759149",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:42.477042Z",
     "iopub.status.busy": "2025-03-25T06:39:42.476924Z",
     "iopub.status.idle": "2025-03-25T06:39:42.891489Z",
     "shell.execute_reply": "2025-03-25T06:39:42.890948Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Asthma/GSE123086/GSE123086_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (22881, 166)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1', '2', '3', '9', '10', '12', '13', '14', '15', '16', '18', '19',\n",
      "       '20', '21', '22', '23', '24', '25', '26', '27'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "59b23b70",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "6e2db696",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:42.892928Z",
     "iopub.status.busy": "2025-03-25T06:39:42.892793Z",
     "iopub.status.idle": "2025-03-25T06:39:42.895278Z",
     "shell.execute_reply": "2025-03-25T06:39:42.894831Z"
    }
   },
   "outputs": [],
   "source": [
    "# Review the gene identifiers\n",
    "# These appear to be numeric identifiers, not standard human gene symbols.\n",
    "# Typically, human gene symbols are alphabetic (like BRCA1, TP53) or alphanumeric (like CD4, IL6).\n",
    "# The identifiers shown are purely numeric, suggesting they're likely probe IDs or some other internal identifiers\n",
    "# that need to be mapped to actual gene symbols for biological interpretation.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2569868e",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "2128713f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:42.896597Z",
     "iopub.status.busy": "2025-03-25T06:39:42.896477Z",
     "iopub.status.idle": "2025-03-25T06:39:48.509522Z",
     "shell.execute_reply": "2025-03-25T06:39:48.508890Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform title found: Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Entrez Gene ID  version)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "{'ID': ['1', '2', '3', '9', '10', '12', '13', '14', '15', '16'], 'ENTREZ_GENE_ID': ['1', '2', '3', '9', '10', '12', '13', '14', '15', '16'], 'SPOT_ID': [1.0, 2.0, 3.0, 9.0, 10.0, 12.0, 13.0, 14.0, 15.0, 16.0]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# Check if there are any platforms defined in the SOFT file that might contain annotation data\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    soft_content = f.read()\n",
    "\n",
    "# Look for platform sections in the SOFT file\n",
    "platform_sections = re.findall(r'^!Platform_title\\s*=\\s*(.+)$', soft_content, re.MULTILINE)\n",
    "if platform_sections:\n",
    "    print(f\"Platform title found: {platform_sections[0]}\")\n",
    "\n",
    "# Try to extract more annotation data by reading directly from the SOFT file\n",
    "# Look for lines that might contain gene symbol mappings\n",
    "symbol_pattern = re.compile(r'ID_REF\\s+Symbol|ID\\s+Gene Symbol', re.IGNORECASE)\n",
    "annotation_lines = []\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for line in f:\n",
    "        if symbol_pattern.search(line):\n",
    "            annotation_lines.append(line)\n",
    "            # Collect the next few lines to see the annotation structure\n",
    "            for _ in range(10):\n",
    "                annotation_lines.append(next(f, ''))\n",
    "\n",
    "if annotation_lines:\n",
    "    print(\"Found potential gene symbol mappings:\")\n",
    "    for line in annotation_lines:\n",
    "        print(line.strip())\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(preview_df(gene_annotation, n=10))\n",
    "\n",
    "# If we need an alternative source of mapping, check if there are any other annotation files in the cohort directory\n",
    "cohort_files = os.listdir(in_cohort_dir)\n",
    "annotation_files = [f for f in cohort_files if 'annotation' in f.lower() or 'platform' in f.lower()]\n",
    "if annotation_files:\n",
    "    print(\"\\nAdditional annotation files found in the cohort directory:\")\n",
    "    for file in annotation_files:\n",
    "        print(file)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cf97cc12",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "7b008462",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:48.510954Z",
     "iopub.status.busy": "2025-03-25T06:39:48.510823Z",
     "iopub.status.idle": "2025-03-25T06:39:55.552879Z",
     "shell.execute_reply": "2025-03-25T06:39:55.552338Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation columns:\n",
      "['ID', 'ENTREZ_GENE_ID', 'SPOT_ID']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping shape: (3822578, 2)\n",
      "Gene mapping preview:\n",
      "   ID Gene\n",
      "0   1    1\n",
      "1   2    2\n",
      "2   3    3\n",
      "3   9    9\n",
      "4  10   10\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapped gene expression data shape: (0, 166)\n",
      "No genes were mapped. Checking for issues...\n",
      "Expression data has 0 unique probe IDs\n",
      "Mapping data has 24167 unique probe IDs\n",
      "Overlap between the two: 0 probe IDs\n"
     ]
    }
   ],
   "source": [
    "# 1. Analyze which columns in gene_annotation match the gene identifiers in gene_data\n",
    "# From the platform title, we know this uses Entrez Gene IDs\n",
    "# We need to extract these properly for mapping\n",
    "\n",
    "# Check gene_annotation structure\n",
    "print(\"Gene annotation columns:\")\n",
    "print(gene_annotation.columns.tolist())\n",
    "\n",
    "# Create a proper mapping dataframe using Entrez Gene IDs\n",
    "probe_col = 'ID'\n",
    "gene_col = 'ENTREZ_GENE_ID'\n",
    "\n",
    "# 2. Get the gene mapping dataframe by extracting the two relevant columns\n",
    "gene_mapping = gene_annotation[[probe_col, gene_col]].copy()\n",
    "gene_mapping.columns = ['ID', 'Gene']  # Rename to match required format for apply_gene_mapping\n",
    "gene_mapping = gene_mapping.dropna()   # Remove rows with missing values\n",
    "gene_mapping = gene_mapping.astype({'ID': 'str', 'Gene': 'str'})  # Ensure proper types\n",
    "\n",
    "print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
    "print(\"Gene mapping preview:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Convert probe-level measurements to gene expression data using the library function\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"Mapped gene expression data shape: {gene_data.shape}\")\n",
    "\n",
    "# Check if we have valid gene data\n",
    "if gene_data.shape[0] > 0:\n",
    "    print(\"First few gene identifiers after mapping:\")\n",
    "    print(gene_data.index[:10].tolist())\n",
    "else:\n",
    "    print(\"No genes were mapped. Checking for issues...\")\n",
    "    \n",
    "    # Check overlap between probe IDs in expression data and mapping data\n",
    "    expr_ids = set(gene_data.index.astype(str))\n",
    "    map_ids = set(gene_mapping['ID'].astype(str))\n",
    "    overlap = expr_ids.intersection(map_ids)\n",
    "    \n",
    "    print(f\"Expression data has {len(expr_ids)} unique probe IDs\")\n",
    "    print(f\"Mapping data has {len(map_ids)} unique probe IDs\")\n",
    "    print(f\"Overlap between the two: {len(overlap)} probe IDs\")\n",
    "    \n",
    "    # Sample overlapping IDs\n",
    "    if overlap:\n",
    "        print(\"Sample overlapping IDs:\", list(overlap)[:5])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c5fdd06b",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "993704d2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:39:55.554413Z",
     "iopub.status.busy": "2025-03-25T06:39:55.554161Z",
     "iopub.status.idle": "2025-03-25T06:40:02.853775Z",
     "shell.execute_reply": "2025-03-25T06:40:02.853406Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original gene data shape: (22881, 166)\n",
      "Gene data index name: ID\n",
      "First few probe IDs: ['1', '2', '3', '9', '10']\n",
      "\n",
      "Checking gene mapping again:\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping shape: (3822578, 2)\n",
      "Gene mapping sample: [{'ID': '1', 'Gene': '1'}, {'ID': '2', 'Gene': '2'}, {'ID': '3', 'Gene': '3'}, {'ID': '9', 'Gene': '9'}, {'ID': '10', 'Gene': '10'}]\n",
      "\n",
      "Reset gene data columns: ['ID', 'GSM3494884', 'GSM3494885', 'GSM3494886', 'GSM3494887', 'GSM3494888', 'GSM3494889', 'GSM3494890', 'GSM3494891', 'GSM3494892', 'GSM3494893', 'GSM3494894', 'GSM3494895', 'GSM3494896', 'GSM3494897', 'GSM3494898', 'GSM3494899', 'GSM3494900', 'GSM3494901', 'GSM3494902', 'GSM3494903', 'GSM3494904', 'GSM3494905', 'GSM3494906', 'GSM3494907', 'GSM3494908', 'GSM3494909', 'GSM3494910', 'GSM3494911', 'GSM3494912', 'GSM3494913', 'GSM3494914', 'GSM3494915', 'GSM3494916', 'GSM3494917', 'GSM3494918', 'GSM3494919', 'GSM3494920', 'GSM3494921', 'GSM3494922', 'GSM3494923', 'GSM3494924', 'GSM3494925', 'GSM3494926', 'GSM3494927', 'GSM3494928', 'GSM3494929', 'GSM3494930', 'GSM3494931', 'GSM3494932', 'GSM3494933', 'GSM3494934', 'GSM3494935', 'GSM3494936', 'GSM3494937', 'GSM3494938', 'GSM3494939', 'GSM3494940', 'GSM3494941', 'GSM3494942', 'GSM3494943', 'GSM3494944', 'GSM3494945', 'GSM3494946', 'GSM3494947', 'GSM3494948', 'GSM3494949', 'GSM3494950', 'GSM3494951', 'GSM3494952', 'GSM3494953', 'GSM3494954', 'GSM3494955', 'GSM3494956', 'GSM3494957', 'GSM3494958', 'GSM3494959', 'GSM3494960', 'GSM3494961', 'GSM3494962', 'GSM3494963', 'GSM3494964', 'GSM3494965', 'GSM3494966', 'GSM3494967', 'GSM3494968', 'GSM3494969', 'GSM3494970', 'GSM3494971', 'GSM3494972', 'GSM3494973', 'GSM3494974', 'GSM3494975', 'GSM3494976', 'GSM3494977', 'GSM3494978', 'GSM3494979', 'GSM3494980', 'GSM3494981', 'GSM3494982', 'GSM3494983', 'GSM3494984', 'GSM3494985', 'GSM3494986', 'GSM3494987', 'GSM3494988', 'GSM3494989', 'GSM3494990', 'GSM3494991', 'GSM3494992', 'GSM3494993', 'GSM3494994', 'GSM3494995', 'GSM3494996', 'GSM3494997', 'GSM3494998', 'GSM3494999', 'GSM3495000', 'GSM3495001', 'GSM3495002', 'GSM3495003', 'GSM3495004', 'GSM3495005', 'GSM3495006', 'GSM3495007', 'GSM3495008', 'GSM3495009', 'GSM3495010', 'GSM3495011', 'GSM3495012', 'GSM3495013', 'GSM3495014', 'GSM3495015', 'GSM3495016', 'GSM3495017', 'GSM3495018', 'GSM3495019', 'GSM3495020', 'GSM3495021', 'GSM3495022', 'GSM3495023', 'GSM3495024', 'GSM3495025', 'GSM3495026', 'GSM3495027', 'GSM3495028', 'GSM3495029', 'GSM3495030', 'GSM3495031', 'GSM3495032', 'GSM3495033', 'GSM3495034', 'GSM3495035', 'GSM3495036', 'GSM3495037', 'GSM3495038', 'GSM3495039', 'GSM3495040', 'GSM3495041', 'GSM3495042', 'GSM3495043', 'GSM3495044', 'GSM3495045', 'GSM3495046', 'GSM3495047', 'GSM3495048', 'GSM3495049']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Mapped gene expression data shape: (0, 166)\n",
      "Still no genes mapped. Let's debug more thoroughly.\n",
      "Expression data first few IDs: ['1', '2', '3', '9', '10']\n",
      "Mapping data first few IDs: ['1', '2', '3', '9', '10']\n",
      "Overlap count after string conversion: 22881\n",
      "\n",
      "Normalized gene data shape: (0, 166)\n"
     ]
    }
   ],
   "source": [
    "# First, let's reload the gene data to ensure we're working with the original structure\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "print(f\"Original gene data shape: {gene_data.shape}\")\n",
    "print(f\"Gene data index name: {gene_data.index.name}\")\n",
    "print(f\"First few probe IDs: {gene_data.index[:5].tolist()}\")\n",
    "\n",
    "# In the previous step, the gene mapping data frame was created correctly\n",
    "# The issue is with the probe IDs in the expression data vs. the mapping data\n",
    "print(\"\\nChecking gene mapping again:\")\n",
    "probe_col = 'ID'\n",
    "gene_col = 'ENTREZ_GENE_ID'\n",
    "\n",
    "# Get the gene mapping dataframe \n",
    "gene_mapping = gene_annotation[[probe_col, gene_col]].copy()\n",
    "gene_mapping.columns = ['ID', 'Gene']\n",
    "gene_mapping = gene_mapping.dropna()\n",
    "gene_mapping = gene_mapping.astype({'ID': 'str', 'Gene': 'str'})\n",
    "\n",
    "print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
    "print(f\"Gene mapping sample: {gene_mapping.head().to_dict('records')}\")\n",
    "\n",
    "# The issue might be that the gene_data's index is already named 'ID'\n",
    "# Try to apply the mapping with the correct probe/gene relationship\n",
    "gene_data_reset = gene_data.reset_index()  # This should create a column 'ID' with the probe identifiers\n",
    "print(f\"\\nReset gene data columns: {gene_data_reset.columns.tolist()}\")\n",
    "\n",
    "# Set the index back to 'ID' to ensure proper functionality with apply_gene_mapping\n",
    "gene_data_reset.set_index('ID', inplace=True)\n",
    "\n",
    "# Now apply the gene mapping\n",
    "gene_expression = apply_gene_mapping(gene_data_reset, gene_mapping)\n",
    "print(f\"\\nMapped gene expression data shape: {gene_expression.shape}\")\n",
    "\n",
    "# Check the result\n",
    "if gene_expression.shape[0] > 0:\n",
    "    print(\"First few gene identifiers after mapping:\")\n",
    "    print(gene_expression.index[:10].tolist())\n",
    "    # Update gene_data to contain the mapped expression data\n",
    "    gene_data = gene_expression\n",
    "else:\n",
    "    print(\"Still no genes mapped. Let's debug more thoroughly.\")\n",
    "    # Check the first few IDs in both datasets to see the format difference\n",
    "    print(f\"Expression data first few IDs: {gene_data.index[:5].tolist()}\")\n",
    "    print(f\"Mapping data first few IDs: {gene_mapping['ID'].head(5).tolist()}\")\n",
    "    \n",
    "    # Try alternative mapping approach in case of formatting differences\n",
    "    # Create a set with string-converted IDs from both datasets\n",
    "    expr_ids_set = set(gene_data.index.astype(str).tolist())\n",
    "    map_ids_set = set(gene_mapping['ID'].astype(str).tolist())\n",
    "    overlap = expr_ids_set.intersection(map_ids_set)\n",
    "    print(f\"Overlap count after string conversion: {len(overlap)}\")\n",
    "    \n",
    "    # If there's still an issue, we'll normalize the gene IDs directly using extract_human_gene_symbols\n",
    "    # This uses the ENTREZ_GENE_ID which should contain gene identifiers\n",
    "    gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    print(f\"\\nNormalized gene data shape: {gene_data.shape}\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}