File size: 22,215 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "df2a2950",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:40:03.746195Z",
     "iopub.status.busy": "2025-03-25T06:40:03.746089Z",
     "iopub.status.idle": "2025-03-25T06:40:03.908281Z",
     "shell.execute_reply": "2025-03-25T06:40:03.907921Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Asthma\"\n",
    "cohort = \"GSE123088\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Asthma\"\n",
    "in_cohort_dir = \"../../input/GEO/Asthma/GSE123088\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Asthma/GSE123088.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Asthma/gene_data/GSE123088.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Asthma/clinical_data/GSE123088.csv\"\n",
    "json_path = \"../../output/preprocess/Asthma/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b9d0f24e",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4e4cbfc9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:40:03.909735Z",
     "iopub.status.busy": "2025-03-25T06:40:03.909588Z",
     "iopub.status.idle": "2025-03-25T06:40:04.197389Z",
     "shell.execute_reply": "2025-03-25T06:40:04.197017Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"A validated single-cell-based strategy to identify diagnostic and therapeutic targets in complex diseases\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['cell type: CD4+ T cells'], 1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', 'primary diagnosis: BREAST_CANCER', 'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'primary diagnosis: CROHN_DISEASE', 'primary diagnosis: ATOPIC_ECZEMA', 'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', 'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', 'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', 'primary diagnosis: TYPE_1_DIABETES', 'primary diagnosis: ACUTE_TONSILLITIS', 'primary diagnosis: ULCERATIVE_COLITIS', 'primary diagnosis: Breast cancer', 'primary diagnosis: Control'], 2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', 'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', 'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', 'diagnosis2: OBESITY'], 3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', 'age: 41', 'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', 'age: 74', 'age: 69', 'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', 'age: 72', 'age: 66', 'age: 36', 'age: 45', 'age: 65', 'age: 48', 'age: 50', 'age: 24', 'age: 42'], 4: [nan, 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', 'age: 16', 'age: 12', 'age: 27']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d376f47c",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "e1c2a70a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:40:04.198653Z",
     "iopub.status.busy": "2025-03-25T06:40:04.198528Z",
     "iopub.status.idle": "2025-03-25T06:40:04.211174Z",
     "shell.execute_reply": "2025-03-25T06:40:04.210857Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of clinical features:\n",
      "{0: [1.0, 56.0, 1.0], 1: [0.0, nan, nan], 2: [0.0, 20.0, 0.0], 3: [0.0, 51.0, nan], 4: [0.0, 37.0, nan], 5: [0.0, 61.0, nan], 6: [0.0, 31.0, nan], 7: [0.0, 41.0, nan], 8: [0.0, 80.0, nan], 9: [0.0, 53.0, nan], 10: [0.0, 73.0, nan], 11: [0.0, 60.0, nan], 12: [0.0, 76.0, nan], 13: [0.0, 77.0, nan], 14: [0.0, 74.0, nan], 15: [0.0, 69.0, nan], 16: [nan, 81.0, nan], 17: [nan, 70.0, nan], 18: [nan, 82.0, nan], 19: [nan, 67.0, nan], 20: [nan, 78.0, nan], 21: [nan, 72.0, nan], 22: [nan, 66.0, nan], 23: [nan, 36.0, nan], 24: [nan, 45.0, nan], 25: [nan, 65.0, nan], 26: [nan, 48.0, nan], 27: [nan, 50.0, nan], 28: [nan, 24.0, nan], 29: [nan, 42.0, nan]}\n",
      "Clinical data saved to ../../output/preprocess/Asthma/clinical_data/GSE123088.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this appears to be a gene expression dataset from CD4+ T cells\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# For trait (Asthma), row 1 contains 'primary diagnosis' which includes 'ASTHMA'\n",
    "trait_row = 1\n",
    "\n",
    "# For gender, row 2 and 3 contain 'Sex: Male' and 'Sex: Female'\n",
    "gender_row = 2  # This row seems to have more gender entries\n",
    "\n",
    "# For age, row 3 and 4 contain age information\n",
    "age_row = 3  # This row seems to have more age entries\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    value = value.lower()\n",
    "    if 'diagnosis' not in value:\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    if 'asthma' in value.lower():\n",
    "        return 1\n",
    "    else:\n",
    "        return 0\n",
    "\n",
    "def convert_gender(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    if 'sex' not in value.lower():\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    if 'female' in value:\n",
    "        return 0\n",
    "    elif 'male' in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    if 'age' not in value.lower():\n",
    "        return None\n",
    "    if ':' in value:\n",
    "        try:\n",
    "            age = int(value.split(':', 1)[1].strip())\n",
    "            return age\n",
    "        except:\n",
    "            return None\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata - initial filtering\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Create DataFrame from the sample characteristics dictionary\n",
    "    sample_characteristics_dict = {0: ['cell type: CD4+ T cells'], \n",
    "                                  1: ['primary diagnosis: ASTHMA', 'primary diagnosis: ATHEROSCLEROSIS', 'primary diagnosis: BREAST_CANCER', \n",
    "                                      'primary diagnosis: CHRONIC_LYMPHOCYTIC_LEUKEMIA', 'primary diagnosis: CROHN_DISEASE', \n",
    "                                      'primary diagnosis: ATOPIC_ECZEMA', 'primary diagnosis: HEALTHY_CONTROL', 'primary diagnosis: INFLUENZA', \n",
    "                                      'primary diagnosis: OBESITY', 'primary diagnosis: PSORIASIS', 'primary diagnosis: SEASONAL_ALLERGIC_RHINITIS', \n",
    "                                      'primary diagnosis: TYPE_1_DIABETES', 'primary diagnosis: ACUTE_TONSILLITIS', \n",
    "                                      'primary diagnosis: ULCERATIVE_COLITIS', 'primary diagnosis: Breast cancer', 'primary diagnosis: Control'], \n",
    "                                  2: ['Sex: Male', 'diagnosis2: ATOPIC_ECZEMA', 'Sex: Female', 'diagnosis2: ATHEROSCLEROSIS', \n",
    "                                      'diagnosis2: ASTHMA_OBESITY', 'diagnosis2: ASTHMA', 'diagnosis2: ASTMHA_SEASONAL_ALLERGIC_RHINITIS', \n",
    "                                      'diagnosis2: OBESITY'], \n",
    "                                  3: ['age: 56', 'Sex: Male', 'age: 20', 'age: 51', 'age: 37', 'age: 61', 'age: 31', 'age: 41', \n",
    "                                      'age: 80', 'age: 53', 'age: 73', 'age: 60', 'age: 76', 'age: 77', 'age: 74', 'age: 69', \n",
    "                                      'age: 81', 'age: 70', 'age: 82', 'age: 67', 'age: 78', 'age: 72', 'age: 66', 'age: 36', \n",
    "                                      'age: 45', 'age: 65', 'age: 48', 'age: 50', 'age: 24', 'age: 42'], \n",
    "                                  4: [float('nan'), 'age: 63', 'age: 74', 'age: 49', 'age: 60', 'age: 68', 'age: 38', 'age: 16', \n",
    "                                      'age: 12', 'age: 27']}\n",
    "    \n",
    "    clinical_data = pd.DataFrame.from_dict(sample_characteristics_dict, orient='index')\n",
    "    \n",
    "    # Extract clinical features\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(clinical_features)\n",
    "    print(\"Preview of clinical features:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Create directory if it doesn't exist and save the clinical features to a CSV file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_features.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e6cb6e04",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "b95d920d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:40:04.212191Z",
     "iopub.status.busy": "2025-03-25T06:40:04.212083Z",
     "iopub.status.idle": "2025-03-25T06:40:04.731481Z",
     "shell.execute_reply": "2025-03-25T06:40:04.731084Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Asthma/GSE123088/GSE123088_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (24166, 204)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['1', '2', '3', '9', '10', '12', '13', '14', '15', '16', '18', '19',\n",
      "       '20', '21', '22', '23', '24', '25', '26', '27'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c6be56df",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "77f1652d",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:40:04.732834Z",
     "iopub.status.busy": "2025-03-25T06:40:04.732709Z",
     "iopub.status.idle": "2025-03-25T06:40:04.734675Z",
     "shell.execute_reply": "2025-03-25T06:40:04.734391Z"
    }
   },
   "outputs": [],
   "source": [
    "# The identifiers shown are not standard human gene symbols\n",
    "# They appear to be numeric indices or probe IDs that would need mapping to actual gene symbols\n",
    "# Standard human gene symbols would typically be formatted like BRCA1, TP53, etc.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f98ba288",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "0abd3538",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:40:04.735822Z",
     "iopub.status.busy": "2025-03-25T06:40:04.735716Z",
     "iopub.status.idle": "2025-03-25T06:40:11.917849Z",
     "shell.execute_reply": "2025-03-25T06:40:11.917454Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Platform title found: Agilent-039494 SurePrint G3 Human GE v2 8x60K Microarray 039381 (Entrez Gene ID  version)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene annotation preview:\n",
      "{'ID': ['1', '2', '3', '9', '10', '12', '13', '14', '15', '16'], 'ENTREZ_GENE_ID': ['1', '2', '3', '9', '10', '12', '13', '14', '15', '16'], 'SPOT_ID': [1.0, 2.0, 3.0, 9.0, 10.0, 12.0, 13.0, 14.0, 15.0, 16.0]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# Check if there are any platforms defined in the SOFT file that might contain annotation data\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    soft_content = f.read()\n",
    "\n",
    "# Look for platform sections in the SOFT file\n",
    "platform_sections = re.findall(r'^!Platform_title\\s*=\\s*(.+)$', soft_content, re.MULTILINE)\n",
    "if platform_sections:\n",
    "    print(f\"Platform title found: {platform_sections[0]}\")\n",
    "\n",
    "# Try to extract more annotation data by reading directly from the SOFT file\n",
    "# Look for lines that might contain gene symbol mappings\n",
    "symbol_pattern = re.compile(r'ID_REF\\s+Symbol|ID\\s+Gene Symbol', re.IGNORECASE)\n",
    "annotation_lines = []\n",
    "with gzip.open(soft_file, 'rt') as f:\n",
    "    for line in f:\n",
    "        if symbol_pattern.search(line):\n",
    "            annotation_lines.append(line)\n",
    "            # Collect the next few lines to see the annotation structure\n",
    "            for _ in range(10):\n",
    "                annotation_lines.append(next(f, ''))\n",
    "\n",
    "if annotation_lines:\n",
    "    print(\"Found potential gene symbol mappings:\")\n",
    "    for line in annotation_lines:\n",
    "        print(line.strip())\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"\\nGene annotation preview:\")\n",
    "print(preview_df(gene_annotation, n=10))\n",
    "\n",
    "# If we need an alternative source of mapping, check if there are any other annotation files in the cohort directory\n",
    "cohort_files = os.listdir(in_cohort_dir)\n",
    "annotation_files = [f for f in cohort_files if 'annotation' in f.lower() or 'platform' in f.lower()]\n",
    "if annotation_files:\n",
    "    print(\"\\nAdditional annotation files found in the cohort directory:\")\n",
    "    for file in annotation_files:\n",
    "        print(file)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5f50054b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "43665388",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:40:11.919215Z",
     "iopub.status.busy": "2025-03-25T06:40:11.919092Z",
     "iopub.status.idle": "2025-03-25T06:40:20.377129Z",
     "shell.execute_reply": "2025-03-25T06:40:20.376780Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using 'ID' to map to 'ENTREZ_GENE_ID'\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapping data shape: (4740924, 2)\n",
      "First few rows of mapping data:\n",
      "   ID Gene\n",
      "0   1    1\n",
      "1   2    2\n",
      "2   3    3\n",
      "3   9    9\n",
      "4  10   10\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapped gene expression data shape: (0, 204)\n",
      "First few rows of gene expression data:\n",
      "Empty DataFrame\n",
      "Columns: [GSM3494884, GSM3494885, GSM3494886, GSM3494887, GSM3494888, GSM3494889, GSM3494890, GSM3494891, GSM3494892, GSM3494893, GSM3494894, GSM3494895, GSM3494896, GSM3494897, GSM3494898, GSM3494899, GSM3494900, GSM3494901, GSM3494902, GSM3494903, GSM3494904, GSM3494905, GSM3494906, GSM3494907, GSM3494908, GSM3494909, GSM3494910, GSM3494911, GSM3494912, GSM3494913, GSM3494914, GSM3494915, GSM3494916, GSM3494917, GSM3494918, GSM3494919, GSM3494920, GSM3494921, GSM3494922, GSM3494923, GSM3494924, GSM3494925, GSM3494926, GSM3494927, GSM3494928, GSM3494929, GSM3494930, GSM3494931, GSM3494932, GSM3494933, GSM3494934, GSM3494935, GSM3494936, GSM3494937, GSM3494938, GSM3494939, GSM3494940, GSM3494941, GSM3494942, GSM3494943, GSM3494944, GSM3494945, GSM3494946, GSM3494947, GSM3494948, GSM3494949, GSM3494950, GSM3494951, GSM3494952, GSM3494953, GSM3494954, GSM3494955, GSM3494956, GSM3494957, GSM3494958, GSM3494959, GSM3494960, GSM3494961, GSM3494962, GSM3494963, GSM3494964, GSM3494965, GSM3494966, GSM3494967, GSM3494968, GSM3494969, GSM3494970, GSM3494971, GSM3494972, GSM3494973, GSM3494974, GSM3494975, GSM3494976, GSM3494977, GSM3494978, GSM3494979, GSM3494980, GSM3494981, GSM3494982, GSM3494983, ...]\n",
      "Index: []\n",
      "\n",
      "[0 rows x 204 columns]\n",
      "Gene expression data saved to ../../output/preprocess/Asthma/gene_data/GSE123088.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine which columns to use for mapping\n",
    "# From the previous output, I can see:\n",
    "# - The gene expression data uses numeric IDs as identifiers (e.g., '1', '2', '3')\n",
    "# - The gene annotation contains columns 'ID' and 'ENTREZ_GENE_ID'\n",
    "# - The annotation shows that 'ID' column contains the same identifiers seen in gene expression data\n",
    "# - 'ENTREZ_GENE_ID' contains gene IDs that we can use to map to gene symbols\n",
    "\n",
    "# First check if we have any additional mapping resources\n",
    "mapping_id_column = 'ID'  # This matches the identifiers in gene_data\n",
    "mapping_gene_column = 'ENTREZ_GENE_ID'  # We'll use this as the gene identifier\n",
    "\n",
    "print(f\"Using '{mapping_id_column}' to map to '{mapping_gene_column}'\")\n",
    "\n",
    "# 2. Extract the mapping data\n",
    "mapping_data = get_gene_mapping(gene_annotation, mapping_id_column, mapping_gene_column)\n",
    "print(f\"Mapping data shape: {mapping_data.shape}\")\n",
    "print(\"First few rows of mapping data:\")\n",
    "print(mapping_data.head())\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
    "print(f\"Mapped gene expression data shape: {gene_data.shape}\")\n",
    "print(\"First few rows of gene expression data:\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Save the mapped gene expression data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}