File size: 17,690 Bytes
92d2f89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "34d61bd8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:56.021396Z",
     "iopub.status.busy": "2025-03-25T06:41:56.021215Z",
     "iopub.status.idle": "2025-03-25T06:41:56.191268Z",
     "shell.execute_reply": "2025-03-25T06:41:56.190912Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Asthma\"\n",
    "cohort = \"GSE230164\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Asthma\"\n",
    "in_cohort_dir = \"../../input/GEO/Asthma/GSE230164\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Asthma/GSE230164.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Asthma/gene_data/GSE230164.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Asthma/clinical_data/GSE230164.csv\"\n",
    "json_path = \"../../output/preprocess/Asthma/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "92bfef84",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "95c1d853",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:56.192760Z",
     "iopub.status.busy": "2025-03-25T06:41:56.192620Z",
     "iopub.status.idle": "2025-03-25T06:41:56.489929Z",
     "shell.execute_reply": "2025-03-25T06:41:56.489587Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Gene expression profiling of asthma\"\n",
      "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
      "!Series_overall_design\t\"Refer to individual Series\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['gender: female', 'gender: male']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "913b1076",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "b39b3aaf",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:56.491259Z",
     "iopub.status.busy": "2025-03-25T06:41:56.491144Z",
     "iopub.status.idle": "2025-03-25T06:41:56.498558Z",
     "shell.execute_reply": "2025-03-25T06:41:56.498241Z"
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this is a SuperSeries about gene expression profiling of asthma\n",
    "# This indicates it likely contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# From the sample characteristics dictionary, we can see gender information is available at index 0\n",
    "# There's no explicit trait (asthma) or age information in the sample characteristics\n",
    "trait_row = None  # Trait information not directly available\n",
    "age_row = None    # Age information not available\n",
    "gender_row = 0     # Gender information is at index 0\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "# For trait (unavailable, but defining function for completeness)\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "    \n",
    "    # Binary conversion for asthma\n",
    "    if 'asthma' in value or 'yes' in value or 'positive' in value or 'case' in value:\n",
    "        return 1\n",
    "    elif 'control' in value or 'no' in value or 'negative' in value or 'healthy' in value:\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "# For age (unavailable, but defining function for completeness)\n",
    "def convert_age(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    else:\n",
    "        value = value.strip()\n",
    "    \n",
    "    # Try to convert to float for continuous age\n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# For gender\n",
    "def convert_gender(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip().lower()\n",
    "    else:\n",
    "        value = value.strip().lower()\n",
    "    \n",
    "    # Binary conversion: female=0, male=1\n",
    "    if 'female' in value or 'f' == value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available (trait_row is not None)\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering and save metadata\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we skip the clinical feature extraction\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e81b59e8",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "fcba5192",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:56.499749Z",
     "iopub.status.busy": "2025-03-25T06:41:56.499645Z",
     "iopub.status.idle": "2025-03-25T06:41:57.002029Z",
     "shell.execute_reply": "2025-03-25T06:41:57.001553Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Asthma/GSE230164/GSE230164-GPL10558_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (47235, 99)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "385d8636",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "bf8612dd",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:57.003453Z",
     "iopub.status.busy": "2025-03-25T06:41:57.003333Z",
     "iopub.status.idle": "2025-03-25T06:41:57.005462Z",
     "shell.execute_reply": "2025-03-25T06:41:57.005138Z"
    }
   },
   "outputs": [],
   "source": [
    "# The gene identifiers start with \"ILMN_\" which indicates they are Illumina probe IDs\n",
    "# from the Illumina BeadArray platform. These are not human gene symbols but are \n",
    "# platform-specific probe IDs that need to be mapped to gene symbols.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1bcf6388",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "379708e7",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:41:57.006677Z",
     "iopub.status.busy": "2025-03-25T06:41:57.006567Z",
     "iopub.status.idle": "2025-03-25T06:42:06.393784Z",
     "shell.execute_reply": "2025-03-25T06:42:06.393386Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fef3f8cb",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "21c2ffae",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:06.395250Z",
     "iopub.status.busy": "2025-03-25T06:42:06.395122Z",
     "iopub.status.idle": "2025-03-25T06:42:06.770591Z",
     "shell.execute_reply": "2025-03-25T06:42:06.770198Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene mapping dataframe shape: (44837, 2)\n",
      "First few rows of gene mapping:\n",
      "             ID                     Gene\n",
      "0  ILMN_1343048      phage_lambda_genome\n",
      "1  ILMN_1343049      phage_lambda_genome\n",
      "2  ILMN_1343050  phage_lambda_genome:low\n",
      "3  ILMN_1343052  phage_lambda_genome:low\n",
      "4  ILMN_1343059                     thrB\n",
      "Gene expression data shape after mapping: (21440, 99)\n",
      "First few gene symbols:\n",
      "Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
      "       'A4GALT', 'A4GNT'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the key columns from the gene annotation dictionary\n",
    "# The gene identifiers in the gene expression data are \"ILMN_\" IDs which map to the \"ID\" column in gene_annotation\n",
    "# The gene symbols are stored in the \"Symbol\" column in gene_annotation\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting the two identified columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col=\"ID\", gene_col=\"Symbol\")\n",
    "print(f\"Gene mapping dataframe shape: {gene_mapping.shape}\")\n",
    "print(\"First few rows of gene mapping:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few gene symbols:\")\n",
    "print(gene_data.index[:10])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "cc8557d0",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "fdf42161",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:42:06.772025Z",
     "iopub.status.busy": "2025-03-25T06:42:06.771903Z",
     "iopub.status.idle": "2025-03-25T06:42:08.167715Z",
     "shell.execute_reply": "2025-03-25T06:42:08.167323Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape after normalization: (20238, 99)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Asthma/gene_data/GSE230164.csv\n",
      "No trait information available in this dataset.\n",
      "Dataset cannot be used for analysis because trait information is missing.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n",
    "\n",
    "# Create directory and save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# Since trait_row was determined to be None in step 2, we cannot extract clinical features\n",
    "# This means the dataset lacks the necessary trait information for our analysis\n",
    "print(\"No trait information available in this dataset.\")\n",
    "\n",
    "# Use is_final=False for validation since we lack trait information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=False  # No trait information available\n",
    ")\n",
    "\n",
    "print(\"Dataset cannot be used for analysis because trait information is missing.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}