File size: 34,048 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1a92f989",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Intellectual_Disability\"\n",
    "cohort = \"GSE59630\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Intellectual_Disability\"\n",
    "in_cohort_dir = \"../../input/GEO/Intellectual_Disability/GSE59630\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Intellectual_Disability/GSE59630.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Intellectual_Disability/gene_data/GSE59630.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Intellectual_Disability/clinical_data/GSE59630.csv\"\n",
    "json_path = \"../../output/preprocess/Intellectual_Disability/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5fb2da15",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "a2dc6449",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f504da40",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2181a652",
   "metadata": {},
   "outputs": [],
   "source": [
    "```python\n",
    "# 1. Check gene expression data availability\n",
    "# This dataset is about gene expression in the brain, as mentioned in the background information\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable availability and data type conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# Intellectual Disability is represented as Down Syndrome (DS) in this dataset\n",
    "# Found in key 2: 'disease status: CTL', 'disease status: DS'\n",
    "trait_row = 2  \n",
    "\n",
    "# Age information is in key 4\n",
    "age_row = 4  \n",
    "\n",
    "# Gender information is in key 3: 'Sex: F', 'Sex: M'\n",
    "gender_row = 3  \n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value (Down Syndrome status) to binary (0 for control, 1 for DS)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    # Extract the value after colon and strip whitespace\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value.upper() == 'DS':\n",
    "        return 1\n",
    "    elif value.upper() == 'CTL':\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to a numeric value in years\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon and strip whitespace\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Extract numeric part and unit\n",
    "    import re\n",
    "    match = re.match(r'(\\d+)(\\w+)', value)\n",
    "    if not match:\n",
    "        return None\n",
    "    \n",
    "    number, unit = match.groups()\n",
    "    number = float(number)\n",
    "    \n",
    "    # Convert to years based on unit\n",
    "    if unit == 'yr':\n",
    "        return number\n",
    "    elif unit == 'mo':\n",
    "        return number / 12\n",
    "    elif unit == 'wg':  # weeks of gestation\n",
    "        return number / 52  # approximate conversion to years\n",
    "    \n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon and strip whitespace\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    if value.upper() == 'F':\n",
    "        return 0\n",
    "    elif value.upper() == 'M':\n",
    "        return 1\n",
    "    \n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Since trait_row is not None, trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction (if trait_row is not None)\n",
    "if trait_row is not None:\n",
    "    # Create a DataFrame from the sample characteristics dictionary\n",
    "    sample_chars = {\n",
    "        0: ['braincode: 97-DFC', 'braincode: 100-DFC', 'braincode: 100-V1C', 'braincode: 159-V1C', 'braincode: 132-DFC', 'braincode: 132-V1C', 'braincode: 132-CBC', 'braincode: 131-OFC', 'braincode: 131-DFC', 'braincode: 131-VFC', 'braincode: 131-ITC', 'braincode: 131-V1C', 'braincode: 131-HIP', 'braincode: 131-CBC', 'braincode: 171-DFC', 'braincode: 171-VFC', 'braincode: 171-MFC', 'braincode: 171-OFC', 'braincode: 171-S1C', 'braincode: 171-IPC', 'braincode: 171-STC', 'braincode: 171-ITC', 'braincode: 171-V1C', 'braincode: 171-CBC', 'braincode: 122-V1C', 'braincode: 122-CBC', 'braincode: 143-OFC', 'braincode: 143-DFC', 'braincode: 173-VFC', 'braincode: 173-ITC'], \n",
    "        1: ['region: DFC', 'region: V1C', 'region: CBC', 'region: OFC', 'region: VFC', 'region: ITC', 'region: HIP', 'region: MFC', 'region: S1C', 'region: IPC', 'region: STC', 'region: FC'], \n",
    "        2: ['disease status: CTL', 'disease status: DS'], \n",
    "        3: ['Sex: F', 'Sex: M'], \n",
    "        4: ['age: 17wg', 'age: 19wg', 'age: 22wg', 'age: 4mo', 'age: 6mo', 'age: 10mo', 'age: 12mo', 'age: 2yr', 'age: 3yr', 'age: 8yr', 'age: 15yr', 'age: 18yr', 'age: 22yr', 'age: 30yr', 'age: 42yr', 'age: 16wg', 'age: 1mo', 'age: 9mo', 'age: 14mo', 'age: 10yr', 'age: 13yr', 'age: 19yr', 'age: 39yr', 'age: 40yr'], \n",
    "        5: ['Stage: 5', 'Stage: 6', 'Stage: 8', 'Stage: 9', 'Stage: 10', 'Stage: 11', 'Stage: 12', 'Stage: 13', 'Stage: 14'], \n",
    "        6: ['postmortem interval: 2', 'postmortem interval: 4', 'postmortem interval: 1', 'postmortem interval: 22', 'postmortem interval: 26', 'postmortem interval: 18', 'postmortem interval: 12', 'postmortem interval: 8', 'postmortem interval: 16', 'postmortem interval: 14.5', 'postmortem interval: 28', 'postmortem interval: 9.5', 'postmortem interval: 19', 'postmortem interval: 3', 'postmortem interval: 23', 'postmortem interval: 24', 'postmortem interval: 11', 'postmortem interval: 17', 'postmortem interval: 15', 'postmortem interval: 10'], \n",
    "        7: ['race: CC', 'race: AA', 'race: H'], \n",
    "        8: ['rna integrity number: 8.9', 'rna integrity number: 10', 'rna integrity number: 7.6', 'rna integrity number: 9.5', 'rna integrity number: 9.2', 'rna integrity number: 7', 'rna integrity number: 7.1', 'rna integrity number: 7.5', 'rna integrity number: 7.4', 'rna integrity number: 8.4', 'rna integrity number: 8.6', 'rna integrity number: 8.8', 'rna integrity number: 8.7', 'rna integrity number: 9.4', 'rna integrity number: 9', 'rna integrity number: 9.6', 'rna integrity number: 9.8', 'rna integrity number: 5', 'rna integrity number: 7.2', 'rna integrity number: 8', 'rna integrity number: 7.8', 'rna integrity number: 9.7', 'rna integrity number: 8.1', 'rna integrity number: 7.9', 'rna integrity number: 9.3', '\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "78589f2a",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "9648663a",
   "metadata": {},
   "outputs": [],
   "source": [
    "```python\n",
    "import pandas as pd\n",
    "import json\n",
    "import os\n",
    "import re\n",
    "from typing import Optional, Callable, Dict, Any, List\n",
    "\n",
    "# First, examine what files are available in the cohort directory\n",
    "print(f\"Examining directory: {in_cohort_dir}\")\n",
    "if os.path.exists(in_cohort_dir):\n",
    "    directory_contents = os.listdir(in_cohort_dir)\n",
    "    print(f\"Files in directory: {directory_contents}\")\n",
    "else:\n",
    "    print(f\"Directory {in_cohort_dir} does not exist\")\n",
    "    directory_contents = []\n",
    "\n",
    "# Check for available data files\n",
    "series_matrix_files = [f for f in directory_contents if \"series_matrix\" in f.lower()]\n",
    "soft_files = [f for f in directory_contents if f.lower().endswith(\".soft\") or f.lower().endswith(\".soft.gz\")]\n",
    "json_files = [f for f in directory_contents if f.lower().endswith(\".json\")]\n",
    "\n",
    "# Load clinical data from available files\n",
    "clinical_data_dict = {}\n",
    "sample_characteristics = {}\n",
    "\n",
    "# Try to load clinical data from different possible file formats\n",
    "if json_files and any(\"clinical_data\" in f.lower() for f in json_files):\n",
    "    clinical_json = next(f for f in json_files if \"clinical_data\" in f.lower())\n",
    "    clinical_data_path = os.path.join(in_cohort_dir, clinical_json)\n",
    "    try:\n",
    "        with open(clinical_data_path, 'r') as f:\n",
    "            clinical_data_dict = json.load(f)\n",
    "        sample_characteristics = clinical_data_dict.get(\"sample_characteristics\", {})\n",
    "        print(f\"Loaded clinical data from {clinical_json}\")\n",
    "    except Exception as e:\n",
    "        print(f\"Error loading {clinical_json}: {str(e)}\")\n",
    "elif series_matrix_files:\n",
    "    # We would need to parse series matrix file to extract clinical data\n",
    "    print(\"Series matrix files found but need additional parsing\")\n",
    "    # Placeholder for series matrix parsing\n",
    "    is_gene_available = True\n",
    "    is_trait_available = False\n",
    "elif soft_files:\n",
    "    # We would need to parse soft file to extract clinical data\n",
    "    print(\"SOFT files found but need additional parsing\")\n",
    "    # Placeholder for SOFT file parsing\n",
    "    is_gene_available = True\n",
    "    is_trait_available = False\n",
    "else:\n",
    "    print(\"No recognizable clinical data files found\")\n",
    "    is_gene_available = False\n",
    "    is_trait_available = False\n",
    "\n",
    "# If we have sample characteristics, analyze them\n",
    "if sample_characteristics:\n",
    "    print(\"Sample characteristics keys:\")\n",
    "    for key in sample_characteristics.keys():\n",
    "        print(f\"Key {key}: {sample_characteristics[key]}\")\n",
    "\n",
    "    # Determine if gene expression data is available\n",
    "    platform_id = clinical_data_dict.get(\"platform_id\", \"\")\n",
    "    title = clinical_data_dict.get(\"title\", \"\")\n",
    "    summary = clinical_data_dict.get(\"summary\", \"\")\n",
    "\n",
    "    is_gene_available = True\n",
    "    if any(term in platform_id.lower() or term in title.lower() or term in summary.lower() \n",
    "           for term in [\"mirna\", \"methylation\", \"methyl\"]):\n",
    "        if not any(term in platform_id.lower() or term in title.lower() or term in summary.lower() \n",
    "                  for term in [\"gene expression\", \"transcriptome\", \"mrna\"]):\n",
    "            is_gene_available = False\n",
    "\n",
    "    # Identify the row in sample characteristics containing trait information\n",
    "    trait_row = None\n",
    "    age_row = None\n",
    "    gender_row = None\n",
    "\n",
    "    # Check each key in sample characteristics for trait, age, and gender data\n",
    "    for key, values in sample_characteristics.items():\n",
    "        unique_values = set(values)\n",
    "        \n",
    "        # Check for intellectual disability information\n",
    "        if any(\"intellectual\" in str(v).lower() for v in unique_values) or \\\n",
    "           any(\"disability\" in str(v).lower() for v in unique_values) or \\\n",
    "           any(\"id\" in str(v).lower() and \"patient\" in str(v).lower() for v in unique_values) or \\\n",
    "           any(\"control\" in str(v).lower() for v in unique_values):\n",
    "            if len(unique_values) > 1:  # Ensure it's not a constant feature\n",
    "                trait_row = int(key)\n",
    "        \n",
    "        # Check for age information\n",
    "        if any(\"age\" in str(v).lower() for v in unique_values):\n",
    "            if len(unique_values) > 1:  # Ensure it's not a constant feature\n",
    "                age_row = int(key)\n",
    "        \n",
    "        # Check for gender information\n",
    "        if any(\"gender\" in str(v).lower() for v in unique_values) or \\\n",
    "           any(\"sex\" in str(v).lower() for v in unique_values) or \\\n",
    "           any(\"male\" in str(v).lower() for v in unique_values) or \\\n",
    "           any(\"female\" in str(v).lower() for v in unique_values):\n",
    "            if len(unique_values) > 1:  # Ensure it's not a constant feature\n",
    "                gender_row = int(key)\n",
    "\n",
    "    # Define conversion functions\n",
    "    def convert_trait(value):\n",
    "        \"\"\"Convert trait values to binary (0: control, 1: intellectual disability).\"\"\"\n",
    "        if value is None:\n",
    "            return None\n",
    "        \n",
    "        value_lower = str(value).lower()\n",
    "        \n",
    "        # Extract content after colon if present\n",
    "        if \":\" in value_lower:\n",
    "            value_lower = value_lower.split(\":\", 1)[1].strip()\n",
    "        \n",
    "        if any(term in value_lower for term in [\"patient\", \"case\", \"intellectual disability\", \"id patient\"]):\n",
    "            return 1\n",
    "        elif any(term in value_lower for term in [\"control\", \"healthy\", \"normal\"]):\n",
    "            return 0\n",
    "        \n",
    "        return None\n",
    "\n",
    "    def convert_age(value):\n",
    "        \"\"\"Convert age values to continuous numeric values.\"\"\"\n",
    "        if value is None:\n",
    "            return None\n",
    "        \n",
    "        value_str = str(value)\n",
    "        \n",
    "        # Extract content after colon if present\n",
    "        if \":\" in value_str:\n",
    "            value_str = value_str.split(\":\", 1)[1].strip()\n",
    "        \n",
    "        # Try to extract numeric age using regex\n",
    "        age_match = re.search(r'(\\d+(?:\\.\\d+)?)', value_str)\n",
    "        if age_match:\n",
    "            return float(age_match.group(1))\n",
    "        \n",
    "        return None\n",
    "\n",
    "    def convert_gender(value):\n",
    "        \"\"\"Convert gender values to binary (0: female, 1: male).\"\"\"\n",
    "        if value is None:\n",
    "            return None\n",
    "        \n",
    "        value_lower = str(value).lower()\n",
    "        \n",
    "        # Extract content after colon if present\n",
    "        if \":\" in value_lower:\n",
    "            value_lower = value_lower.split(\":\", 1)[1].strip()\n",
    "        \n",
    "        if any(term in value_lower for term in [\"female\", \"f\", \"woman\"]):\n",
    "            return 0\n",
    "        elif any(term in value_lower for term in [\"male\", \"m\", \"man\"]):\n",
    "            return 1\n",
    "        \n",
    "        return None\n",
    "\n",
    "    # Check trait data availability\n",
    "    is_trait_available = trait_row is not None\n",
    "else:\n",
    "    # If no sample characteristics data is found, set variables to default values\n",
    "    trait_row = None\n",
    "    age_row = None\n",
    "    gender_row = None\n",
    "    is_trait_available = False\n",
    "\n",
    "# Print found information\n",
    "print(f\"Gene expression data available: {is_gene_available}\")\n",
    "print(f\"Trait data available: {is_trait_available}\")\n",
    "if is_trait_available:\n",
    "    print(f\"Trait row: {trait_row}\")\n",
    "    print(f\"Age row: {age_row}\")\n",
    "    print(f\"Gender row: {gender_row}\")\n",
    "\n",
    "# Save metadata with initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Extract clinical features if trait data is available\n",
    "if is_trait_available and sample_characteristics:\n",
    "    # Convert sample characteristics dictionary to DataFrame for processing\n",
    "    clinical_df = pd.DataFrame.from_dict(sample_characteristics, orient='index')\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_df,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bb461be2",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "4a9ceeab",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract gene expression data from the matrix file\n",
    "try:\n",
    "    print(\"Extracting gene data from matrix file:\")\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    if gene_data.empty:\n",
    "        print(\"Extracted gene expression data is empty\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n",
    "        print(\"First 20 gene IDs:\")\n",
    "        print(gene_data.index[:20])\n",
    "        is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n",
    "    is_gene_available = False\n",
    "\n",
    "print(f\"\\nGene expression data available: {is_gene_available}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "74cd122a",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3403bd70",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examining the gene identifiers from the output\n",
    "# These appear to be Affymetrix probe IDs, not standard human gene symbols\n",
    "# These numeric IDs (2315554, 2315633, etc.) need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "18e572b2",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "215ec1cc",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Extract gene annotation data from the SOFT file\n",
    "print(\"Extracting gene annotation data from SOFT file...\")\n",
    "try:\n",
    "    # Use the library function to extract gene annotation\n",
    "    gene_annotation = get_gene_annotation(soft_file)\n",
    "    print(f\"Successfully extracted gene annotation data with {len(gene_annotation.index)} rows\")\n",
    "    \n",
    "    # Preview the annotation DataFrame\n",
    "    print(\"\\nGene annotation preview (first few rows):\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "    # Show column names to help identify which columns we need for mapping\n",
    "    print(\"\\nColumn names in gene annotation data:\")\n",
    "    print(gene_annotation.columns.tolist())\n",
    "    \n",
    "    # Check for relevant mapping columns\n",
    "    if 'GB_ACC' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\")\n",
    "        # Count non-null values in GB_ACC column\n",
    "        non_null_count = gene_annotation['GB_ACC'].count()\n",
    "        print(f\"Number of rows with GenBank accessions: {non_null_count} out of {len(gene_annotation)}\")\n",
    "    \n",
    "    if 'SPOT_ID' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\")\n",
    "        print(\"Example SPOT_ID format:\", gene_annotation['SPOT_ID'].iloc[0])\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation data: {e}\")\n",
    "    is_gene_available = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "18dd18ce",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "55ba939a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identifying mapping columns in the gene annotation data\n",
    "print(\"Examining gene annotation data to identify mapping columns...\")\n",
    "\n",
    "# The 'ID' column in gene_annotation contains probe IDs matching the gene expression data indices\n",
    "# The 'gene_assignment' column contains gene symbol information, but needs parsing\n",
    "\n",
    "# Examining the gene_assignment column\n",
    "print(\"\\nExample gene_assignment values:\")\n",
    "print(gene_annotation['gene_assignment'].head(3).tolist())\n",
    "\n",
    "# 2. Create a mapping dataframe with probe IDs and gene symbols\n",
    "print(\"\\nCreating gene mapping dataframe...\")\n",
    "\n",
    "# Function to extract gene symbols from gene_assignment string\n",
    "def extract_gene_symbols(assignment):\n",
    "    if isinstance(assignment, str) and assignment != '---':\n",
    "        # Extract gene symbols that appear after '//' (typically the second element after splitting by '//')\n",
    "        parts = assignment.split('//')\n",
    "        if len(parts) >= 2:\n",
    "            gene_symbol = parts[1].strip()\n",
    "            return gene_symbol\n",
    "    return None\n",
    "\n",
    "# Apply extraction to create mapping\n",
    "gene_annotation['Gene'] = gene_annotation['gene_assignment'].apply(extract_gene_symbols)\n",
    "\n",
    "# Create mapping dataframe with ID and Gene columns\n",
    "mapping_df = gene_annotation[['ID', 'Gene']].copy()\n",
    "mapping_df = mapping_df.dropna()  # Remove rows without gene symbols\n",
    "print(f\"Created mapping with {len(mapping_df)} entries\")\n",
    "print(\"\\nMapping preview:\")\n",
    "print(mapping_df.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
    "print(\"\\nApplying gene mapping to convert probe measurements to gene expression...\")\n",
    "\n",
    "# Use the library function to map probes to genes\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "print(f\"Converted data to {len(gene_data.index)} unique genes\")\n",
    "print(\"\\nFirst few gene symbols:\")\n",
    "print(gene_data.index[:10].tolist())\n",
    "\n",
    "# Print shape of resulting gene expression matrix\n",
    "print(f\"\\nGene expression matrix shape: {gene_data.shape}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c35bcce0",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "ce2e939c",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get gene mapping function from previous step\n",
    "def extract_gene_symbols(assignment):\n",
    "    if isinstance(assignment, str) and assignment != '---':\n",
    "        # Extract gene symbols that appear after '//' (typically the second element after splitting by '//')\n",
    "        parts = assignment.split('//')\n",
    "        if len(parts) >= 2:\n",
    "            gene_symbol = parts[1].strip()\n",
    "            return gene_symbol\n",
    "    return None\n",
    "\n",
    "# 2. Get the file paths for the SOFT file and matrix file again\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 3. Retrieve and process gene data \n",
    "print(\"Retrieving gene expression data...\")\n",
    "gene_data_raw = get_genetic_data(matrix_file)\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "gene_annotation['Gene'] = gene_annotation['gene_assignment'].apply(lambda x: extract_gene_symbols(x))\n",
    "mapping_df = gene_annotation[['ID', 'Gene']].copy().dropna()\n",
    "gene_data = apply_gene_mapping(gene_data_raw, mapping_df)\n",
    "print(f\"Retrieved gene expression data with shape: {gene_data.shape}\")\n",
    "\n",
    "# 4. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols in the expression data...\")\n",
    "try:\n",
    "    # Normalize gene symbols\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save normalized gene data\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "    print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "    is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# 5. Extract clinical data since it doesn't exist yet\n",
    "print(\"\\nExtracting clinical data...\")\n",
    "try:\n",
    "    # Since we haven't yet extracted clinical features, do it now\n",
    "    # First, read background information and clinical data from the matrix file\n",
    "    background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
    "    \n",
    "    # Define conversion functions for trait (Down Syndrome), age, and gender\n",
    "    def convert_trait(value):\n",
    "        \"\"\"Convert trait value (Down Syndrome status) to binary (0 for control, 1 for DS)\"\"\"\n",
    "        if value is None:\n",
    "            return None\n",
    "        # Extract the value after colon and strip whitespace\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        \n",
    "        if value.upper() == 'DS':\n",
    "            return 1\n",
    "        elif value.upper() == 'CTL':\n",
    "            return 0\n",
    "        return None\n",
    "\n",
    "    def convert_age(value):\n",
    "        \"\"\"Convert age to a numeric value in years\"\"\"\n",
    "        if value is None:\n",
    "            return None\n",
    "        \n",
    "        # Extract the value after colon and strip whitespace\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        \n",
    "        # Extract numeric part and unit\n",
    "        import re\n",
    "        match = re.match(r'(\\d+)(\\w+)', value)\n",
    "        if not match:\n",
    "            return None\n",
    "        \n",
    "        number, unit = match.groups()\n",
    "        number = float(number)\n",
    "        \n",
    "        # Convert to years based on unit\n",
    "        if unit == 'yr':\n",
    "            return number\n",
    "        elif unit == 'mo':\n",
    "            return number / 12\n",
    "        elif unit == 'wg':  # weeks of gestation\n",
    "            return number / 52  # approximate conversion to years\n",
    "        \n",
    "        return None\n",
    "\n",
    "    def convert_gender(value):\n",
    "        \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n",
    "        if value is None:\n",
    "            return None\n",
    "        \n",
    "        # Extract the value after colon and strip whitespace\n",
    "        if ':' in value:\n",
    "            value = value.split(':', 1)[1].strip()\n",
    "        \n",
    "        if value.upper() == 'F':\n",
    "            return 0\n",
    "        elif value.upper() == 'M':\n",
    "            return 1\n",
    "        \n",
    "        return None\n",
    "    \n",
    "    # Based on earlier inspection, we know:\n",
    "    # trait_row = 2  (disease status: CTL or DS)\n",
    "    # age_row = 4    (age: with various values)\n",
    "    # gender_row = 3 (Sex: F or M)\n",
    "    \n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_data, \n",
    "        trait=trait, \n",
    "        trait_row=2, \n",
    "        convert_trait=convert_trait,\n",
    "        age_row=4, \n",
    "        convert_age=convert_age, \n",
    "        gender_row=3, \n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data extracted and saved to {out_clinical_data_file}\")\n",
    "    print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
    "    \n",
    "    is_trait_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting clinical data: {e}\")\n",
    "    selected_clinical_df = pd.DataFrame()  # Empty dataframe instead of None\n",
    "    is_trait_available = False\n",
    "\n",
    "# 6. Link clinical and genetic data\n",
    "print(\"\\nLinking clinical and genetic data...\")\n",
    "try:\n",
    "    if is_trait_available and is_gene_available:\n",
    "        # Link clinical and genetic data\n",
    "        linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "        print(f\"Linked data shape: {linked_data.shape}\")\n",
    "        \n",
    "        # 7. Handle missing values systematically\n",
    "        print(\"\\nHandling missing values...\")\n",
    "        linked_data = handle_missing_values(linked_data, trait)\n",
    "        print(f\"After handling missing values, data shape: {linked_data.shape}\")\n",
    "        \n",
    "        # 8. Determine whether features are biased\n",
    "        print(\"\\nChecking for bias in features...\")\n",
    "        is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    else:\n",
    "        print(\"Cannot link data: gene or trait data is not available\")\n",
    "        if is_trait_available:\n",
    "            linked_data = selected_clinical_df.T  # Use clinical data if available\n",
    "        else:\n",
    "            linked_data = pd.DataFrame({trait: [0, 1]})  # Minimal dataframe for validation\n",
    "        is_biased = True\n",
    "except Exception as e:\n",
    "    print(f\"Error in data linking or processing: {e}\")\n",
    "    linked_data = pd.DataFrame({trait: [0, 1]})  # Minimal dataframe for validation\n",
    "    is_biased = True\n",
    "\n",
    "# 9. Validate and save cohort info\n",
    "print(\"\\nPerforming final validation...\")\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Down Syndrome dataset with gene expression from brain tissues across lifespan.\"\n",
    ")\n",
    "\n",
    "# 10. Save the linked data if usable\n",
    "if is_usable:\n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save linked data\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(f\"Dataset not usable for {trait} association studies. Data not saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}