File size: 40,268 Bytes
736e4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e0933817",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:09.346344Z",
"iopub.status.busy": "2025-03-25T07:11:09.346178Z",
"iopub.status.idle": "2025-03-25T07:11:09.513099Z",
"shell.execute_reply": "2025-03-25T07:11:09.512640Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Intellectual_Disability\"\n",
"cohort = \"GSE89594\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Intellectual_Disability\"\n",
"in_cohort_dir = \"../../input/GEO/Intellectual_Disability/GSE89594\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Intellectual_Disability/GSE89594.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Intellectual_Disability/gene_data/GSE89594.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Intellectual_Disability/clinical_data/GSE89594.csv\"\n",
"json_path = \"../../output/preprocess/Intellectual_Disability/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "b1e9259d",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "c9ba9662",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:09.514640Z",
"iopub.status.busy": "2025-03-25T07:11:09.514483Z",
"iopub.status.idle": "2025-03-25T07:11:09.886511Z",
"shell.execute_reply": "2025-03-25T07:11:09.885840Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Integrated network analysis reveals genotype-phenotype correlations in Williams syndrome\"\n",
"!Series_summary\t\"Williams Syndrome (WS) is a rare neurodevelopmental disorder caused by heterozygous deletions in a chromosome 7q11.23 region typically encompassing 26-28 genes. WS patients exhibit a wide spectrum of symptoms, including cardiovascular disease, intellectual disability, visuospatial deficits and hypersociability a behavioral profile that contrasts with autism spectrum disorder (ASD). However, the relationship between neuropsychiatric phenotypes and dysregulated gene networks caused by the 7q11.23 deletion is unknown. We report results from a large-scale integrated transcriptome analysis of peripheral blood in clinically evaluated subjects with WS, ASD and matched controls. We identified significantly differential expressed genes in WS as compared with ASD or controls, even after removing genes spanning the 7q11.23 region. Using weighted gene co-expression network analysis (WGCNA), we found that three co-expression modules were upregulated in WS, and were significantly associated with the intermediate phenotypes such as anxiety and attention problems. Notably, these three co-expression modules were only composed of genes located outside of 7q11.23 critical region. One module was associated with immune systems and B cell proliferation. Its top hub gene, BCL11A, is implicated in ASD and chromatin modification. Another module was enriched with genes associated with astrocytes and oligodendrocytes, and the third module was associated with RNA processing and neurons. MicroRNA (miRNA) profiling revealed differentially expressed miRNAs whose targets were enriched in each co-expression module associated with WS. These results identify genes and potential driver miRNAs, located outside of 7q11.23 critical region, that are novel candidates for mediating the neuropsychiatric phenotypes in WS.\"\n",
"!Series_overall_design\t\"We profiled gene expression from 32 WS patients, 32 ASD patients and 30 controls using peripheral blood.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['diagnosis: control', 'diagnosis: autism spectrum disorder (ASD)', 'diagnosis: Williams Syndrome (WS)'], 1: ['tissue: whole blood'], 2: ['age: 22y', 'age: 23y', 'age: 24y', 'age: 33y', 'age: 21y', 'age: 20y', 'age: 28y', 'age: 25y', 'age: 32y', 'age: 36y', 'age: 30y', 'age: 27y', 'age: 31y', 'age: 35y', 'age: 10y', 'age: 16y', 'age: 11y', 'age: 12y', 'age: 38y', 'age: 34y', 'age: 29y', 'age: 19y', 'age: 13y', 'age: 15y', 'age: 43y', 'age: 14y', 'age: 17y', 'age: 39y', 'age: 26y'], 3: ['gender: female', 'gender: male']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "6a7a55c0",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "98aaf20b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:09.887907Z",
"iopub.status.busy": "2025-03-25T07:11:09.887784Z",
"iopub.status.idle": "2025-03-25T07:11:09.914595Z",
"shell.execute_reply": "2025-03-25T07:11:09.914094Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical Data Preview:\n",
"{'GSM2384988': [0.0, 22.0, 0.0], 'GSM2384989': [0.0, 23.0, 0.0], 'GSM2384990': [0.0, 24.0, 0.0], 'GSM2384991': [0.0, 24.0, 0.0], 'GSM2384992': [0.0, 33.0, 1.0], 'GSM2384993': [0.0, 22.0, 1.0], 'GSM2384994': [0.0, 24.0, 0.0], 'GSM2384995': [0.0, 21.0, 1.0], 'GSM2384996': [0.0, 24.0, 1.0], 'GSM2384997': [0.0, 20.0, 0.0], 'GSM2384998': [0.0, 28.0, 0.0], 'GSM2384999': [0.0, 21.0, 1.0], 'GSM2385000': [0.0, 21.0, 0.0], 'GSM2385001': [0.0, 22.0, 1.0], 'GSM2385002': [0.0, 25.0, 1.0], 'GSM2385003': [0.0, 23.0, 0.0], 'GSM2385004': [0.0, 20.0, 0.0], 'GSM2385005': [0.0, 21.0, 1.0], 'GSM2385006': [0.0, 20.0, 0.0], 'GSM2385007': [0.0, 32.0, 1.0], 'GSM2385008': [0.0, 36.0, 0.0], 'GSM2385009': [0.0, 24.0, 1.0], 'GSM2385010': [0.0, 21.0, 1.0], 'GSM2385011': [0.0, 30.0, 0.0], 'GSM2385012': [0.0, 28.0, 1.0], 'GSM2385013': [0.0, 22.0, 1.0], 'GSM2385014': [0.0, 24.0, 0.0], 'GSM2385015': [0.0, 21.0, 1.0], 'GSM2385016': [0.0, 22.0, 1.0], 'GSM2385017': [0.0, 20.0, 0.0], 'GSM2385018': [0.0, 27.0, 0.0], 'GSM2385019': [0.0, 22.0, 0.0], 'GSM2385020': [0.0, 23.0, 1.0], 'GSM2385021': [0.0, 20.0, 1.0], 'GSM2385022': [0.0, 31.0, 1.0], 'GSM2385023': [0.0, 27.0, 0.0], 'GSM2385024': [0.0, 32.0, 1.0], 'GSM2385025': [0.0, 20.0, 1.0], 'GSM2385026': [0.0, 36.0, 1.0], 'GSM2385027': [0.0, 22.0, 0.0], 'GSM2385028': [0.0, 28.0, 0.0], 'GSM2385029': [0.0, 25.0, 0.0], 'GSM2385030': [0.0, 35.0, 1.0], 'GSM2385031': [0.0, 22.0, 0.0], 'GSM2385032': [0.0, 22.0, 1.0], 'GSM2385033': [0.0, 10.0, 1.0], 'GSM2385034': [0.0, 16.0, 0.0], 'GSM2385035': [0.0, 10.0, 0.0], 'GSM2385036': [0.0, 33.0, 1.0], 'GSM2385037': [0.0, 21.0, 0.0], 'GSM2385038': [0.0, 11.0, 1.0], 'GSM2385039': [0.0, 10.0, 1.0], 'GSM2385040': [0.0, 35.0, 0.0], 'GSM2385041': [0.0, 12.0, 1.0], 'GSM2385042': [0.0, 38.0, 0.0], 'GSM2385043': [0.0, 24.0, 1.0], 'GSM2385044': [0.0, 34.0, 1.0], 'GSM2385045': [0.0, 32.0, 0.0], 'GSM2385046': [0.0, 21.0, 0.0], 'GSM2385047': [0.0, 29.0, 0.0], 'GSM2385048': [0.0, 20.0, 1.0], 'GSM2385049': [0.0, 19.0, 0.0], 'GSM2385050': [1.0, 24.0, 1.0], 'GSM2385051': [1.0, 13.0, 0.0], 'GSM2385052': [1.0, 23.0, 0.0], 'GSM2385053': [1.0, 15.0, 0.0], 'GSM2385054': [1.0, 43.0, 0.0], 'GSM2385055': [1.0, 10.0, 1.0], 'GSM2385056': [1.0, 13.0, 0.0], 'GSM2385057': [1.0, 16.0, 0.0], 'GSM2385058': [1.0, 27.0, 1.0], 'GSM2385059': [1.0, 24.0, 0.0], 'GSM2385060': [1.0, 11.0, 1.0], 'GSM2385061': [1.0, 24.0, 1.0], 'GSM2385062': [1.0, 32.0, 0.0], 'GSM2385063': [1.0, 24.0, 0.0], 'GSM2385064': [1.0, 27.0, 0.0], 'GSM2385065': [1.0, 16.0, 1.0], 'GSM2385066': [1.0, 14.0, 0.0], 'GSM2385067': [1.0, 11.0, 1.0], 'GSM2385068': [1.0, 24.0, 1.0], 'GSM2385069': [1.0, 28.0, 1.0], 'GSM2385070': [1.0, 17.0, 1.0], 'GSM2385071': [1.0, 15.0, 0.0], 'GSM2385072': [1.0, 34.0, 0.0], 'GSM2385073': [1.0, 39.0, 1.0], 'GSM2385074': [1.0, 12.0, 1.0], 'GSM2385075': [1.0, 15.0, 0.0], 'GSM2385076': [1.0, 21.0, 0.0], 'GSM2385077': [1.0, 29.0, 0.0], 'GSM2385078': [1.0, 23.0, 1.0], 'GSM2385079': [1.0, 26.0, 1.0], 'GSM2385080': [1.0, 19.0, 1.0], 'GSM2385081': [1.0, 21.0, 1.0]}\n",
"Clinical data saved to ../../output/preprocess/Intellectual_Disability/clinical_data/GSE89594.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# The background information suggests this dataset contains gene expression data\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Identify rows for each variable in the sample characteristics\n",
"\n",
"# For trait (Intellectual Disability):\n",
"# The diagnosis row (0) contains Williams Syndrome, ASD, and control status\n",
"# Williams Syndrome is associated with intellectual disability according to the background info\n",
"trait_row = 0\n",
"\n",
"# For age:\n",
"# Age information is available in row 2\n",
"age_row = 2\n",
"\n",
"# For gender:\n",
"# Gender information is available in row 3\n",
"gender_row = 3\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"\n",
" Convert diagnosis to intellectual disability status\n",
" Williams Syndrome (WS) has intellectual disability = 1\n",
" Control and ASD are set to 0\n",
" \"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" diagnosis = value.split(':', 1)[1].strip().lower()\n",
" \n",
" if 'williams syndrome' in diagnosis or 'ws' in diagnosis:\n",
" return 1 # Williams Syndrome patients have intellectual disability\n",
" elif 'control' in diagnosis or 'asd' in diagnosis or 'autism' in diagnosis:\n",
" return 0 # Controls and ASD patients are the reference group\n",
" else:\n",
" return None # Unknown values\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age string to numeric value in years\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" try:\n",
" # Extract the age value, typically in format \"age: XXy\"\n",
" age_str = value.split(':', 1)[1].strip()\n",
" # Remove 'y' and convert to integer\n",
" if 'y' in age_str:\n",
" age = int(age_str.replace('y', '').strip())\n",
" return age\n",
" else:\n",
" return None\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to binary: female=0, male=1\"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" gender = value.split(':', 1)[1].strip().lower()\n",
" \n",
" if 'female' in gender:\n",
" return 0\n",
" elif 'male' in gender:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Check if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Conduct initial filtering\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the clinical data\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical Data Preview:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "c6c512db",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "0d851347",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:09.915978Z",
"iopub.status.busy": "2025-03-25T07:11:09.915862Z",
"iopub.status.idle": "2025-03-25T07:11:10.524470Z",
"shell.execute_reply": "2025-03-25T07:11:10.523908Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting gene data from matrix file:\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully extracted gene data with 62976 rows\n",
"First 20 gene IDs:\n",
"Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
" '14', '15', '16', '17', '18', '19', '20'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene expression data available: True\n"
]
}
],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract gene expression data from the matrix file\n",
"try:\n",
" print(\"Extracting gene data from matrix file:\")\n",
" gene_data = get_genetic_data(matrix_file)\n",
" if gene_data.empty:\n",
" print(\"Extracted gene expression data is empty\")\n",
" is_gene_available = False\n",
" else:\n",
" print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n",
" print(\"First 20 gene IDs:\")\n",
" print(gene_data.index[:20])\n",
" is_gene_available = True\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n",
" print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n",
" is_gene_available = False\n",
"\n",
"print(f\"\\nGene expression data available: {is_gene_available}\")\n"
]
},
{
"cell_type": "markdown",
"id": "9cd7aa4b",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "2149d5d8",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:10.526225Z",
"iopub.status.busy": "2025-03-25T07:11:10.526088Z",
"iopub.status.idle": "2025-03-25T07:11:10.528414Z",
"shell.execute_reply": "2025-03-25T07:11:10.527975Z"
}
},
"outputs": [],
"source": [
"# The extracted gene IDs appear to be numeric identifiers (1, 2, 3, etc.)\n",
"# These are not standard human gene symbols, which would typically be alphanumeric \n",
"# identifiers like BRCA1, TP53, etc.\n",
"# Therefore, these identifiers need to be mapped to proper gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "09b9bb93",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "32ec005c",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:10.529720Z",
"iopub.status.busy": "2025-03-25T07:11:10.529603Z",
"iopub.status.idle": "2025-03-25T07:11:19.022905Z",
"shell.execute_reply": "2025-03-25T07:11:19.022265Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Extracting gene annotation data from SOFT file...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Successfully extracted gene annotation data with 5982814 rows\n",
"\n",
"Gene annotation preview (first few rows):\n",
"{'ID': ['1', '2', '3', '4', '5'], 'COL': ['192', '192', '192', '192', '192'], 'ROW': [328.0, 326.0, 324.0, 322.0, 320.0], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'GB_ACC': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'LOCUSLINK_ID': [nan, nan, nan, 50865.0, 23704.0], 'GENE_SYMBOL': [nan, nan, nan, 'HEBP1', 'KCNE4'], 'GENE_NAME': [nan, nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.642618', 'Hs.348522'], 'ENSEMBL_ID': [nan, nan, nan, 'ENST00000014930', 'ENST00000281830'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788'], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256'], 'CYTOBAND': [nan, nan, nan, 'hs|12p13.1', 'hs|2q36.1'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]'], 'GO_ID': [nan, nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)'], 'SEQUENCE': [nan, nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT']}\n",
"\n",
"Column names in gene annotation data:\n",
"['ID', 'COL', 'ROW', 'NAME', 'SPOT_ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'LOCUSLINK_ID', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE']\n",
"\n",
"The dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\n",
"Number of rows with GenBank accessions: 46262 out of 5982814\n",
"\n",
"The dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\n",
"Example SPOT_ID format: CONTROL\n"
]
}
],
"source": [
"# 1. Extract gene annotation data from the SOFT file\n",
"print(\"Extracting gene annotation data from SOFT file...\")\n",
"try:\n",
" # Use the library function to extract gene annotation\n",
" gene_annotation = get_gene_annotation(soft_file)\n",
" print(f\"Successfully extracted gene annotation data with {len(gene_annotation.index)} rows\")\n",
" \n",
" # Preview the annotation DataFrame\n",
" print(\"\\nGene annotation preview (first few rows):\")\n",
" print(preview_df(gene_annotation))\n",
" \n",
" # Show column names to help identify which columns we need for mapping\n",
" print(\"\\nColumn names in gene annotation data:\")\n",
" print(gene_annotation.columns.tolist())\n",
" \n",
" # Check for relevant mapping columns\n",
" if 'GB_ACC' in gene_annotation.columns:\n",
" print(\"\\nThe dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\")\n",
" # Count non-null values in GB_ACC column\n",
" non_null_count = gene_annotation['GB_ACC'].count()\n",
" print(f\"Number of rows with GenBank accessions: {non_null_count} out of {len(gene_annotation)}\")\n",
" \n",
" if 'SPOT_ID' in gene_annotation.columns:\n",
" print(\"\\nThe dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\")\n",
" print(\"Example SPOT_ID format:\", gene_annotation['SPOT_ID'].iloc[0])\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation data: {e}\")\n",
" is_gene_available = False\n"
]
},
{
"cell_type": "markdown",
"id": "f28fb34d",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5c910e0a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:19.024365Z",
"iopub.status.busy": "2025-03-25T07:11:19.024227Z",
"iopub.status.idle": "2025-03-25T07:11:20.723431Z",
"shell.execute_reply": "2025-03-25T07:11:20.722883Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Creating gene mapping dataframe...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Created mapping dataframe with 54295 rows\n",
"\n",
"Mapping preview (first few rows):\n",
"{'ID': ['4', '5', '6', '7', '8'], 'Gene': ['HEBP1', 'KCNE4', 'BPIFA3', 'LOC100129869', 'IRG1']}\n",
"\n",
"Applying gene mapping to convert probe data to gene expression data...\n",
"Converted gene expression data has 20353 genes and 94 samples\n",
"\n",
"Gene expression data preview (first few genes):\n",
"{'GSM2384988': [14.514778639, 7.770994141, 50.618383177, 15.846223135999999, 54.533775519], 'GSM2384989': [16.325146179, 8.384069535, 50.382498582, 13.472051642, 52.761437181], 'GSM2384990': [15.077915928, 8.309437624, 53.497208234, 12.255831167, 53.993246103], 'GSM2384991': [16.024857048999998, 8.676199029, 52.469042418, 13.262691837, 53.174300299], 'GSM2384992': [14.205910164, 7.552051737, 54.605664255, 12.584846452, 54.944290563], 'GSM2384993': [15.044565859999999, 8.225743264, 52.634522866, 15.048242242, 56.156791729], 'GSM2384994': [15.585593495000001, 8.360763022, 53.430031596999996, 14.791714749, 54.135796581], 'GSM2384995': [15.414802946, 8.531130458, 52.296378531, 14.445646477, 53.741951262], 'GSM2384996': [15.46544158, 8.563681049, 53.578278128, 12.548410853, 54.320390376999995], 'GSM2384997': [15.188334992, 7.645462936, 51.604801099, 13.380607658, 54.028049941999996], 'GSM2384998': [15.208071473, 8.279509301, 51.628808728, 13.351027239, 54.965215073], 'GSM2384999': [14.384843081, 7.334482451, 52.500885618, 13.299840404000001, 53.994465181], 'GSM2385000': [16.228508343, 8.891434682, 52.677444221, 13.885018113000001, 53.644934982], 'GSM2385001': [15.820834405, 7.60677528, 52.941566787, 13.558493768999998, 53.682858379], 'GSM2385002': [15.542246628000001, 8.092374769, 54.296462787, 16.713950541, 55.817701374], 'GSM2385003': [15.606203765, 8.264801891, 51.017499604, 13.733707238000001, 51.878050808], 'GSM2385004': [14.788525489000001, 7.739471785, 51.129183428, 14.822868383, 53.632104864], 'GSM2385005': [15.588141816, 7.589906046, 51.438637842, 14.973570751, 55.54198422], 'GSM2385006': [15.221691556, 7.791332601, 53.387527762, 13.350007868999999, 58.38351915], 'GSM2385007': [15.182614898, 7.681608464, 51.602260008, 12.809864700999999, 54.336897011], 'GSM2385008': [15.064500563, 7.910942444, 50.564818677, 13.777841789, 53.042786054], 'GSM2385009': [14.415959057, 7.374549275, 50.234938056000004, 15.405982466, 60.094031696], 'GSM2385010': [15.252155449, 7.847153958, 50.769850901, 15.405021224, 54.049617201000004], 'GSM2385011': [14.325024884000001, 7.654060804, 51.234199409, 14.613404854999999, 52.574568599], 'GSM2385012': [14.574575793, 7.471843766, 50.988408294, 13.599394983, 56.197646129], 'GSM2385013': [14.612004424000002, 7.520175579, 50.412711681000005, 15.167934099, 54.784828061], 'GSM2385014': [15.034733809999999, 7.499608395, 50.915542939, 14.391980108000002, 53.135274698], 'GSM2385015': [15.441442778999999, 7.183445276, 50.006158191000004, 12.7894979, 51.740860614999995], 'GSM2385016': [14.808675599, 7.394731718, 50.677859092, 13.127278580999999, 56.663544262], 'GSM2385017': [16.028678433, 7.285790726, 51.17731261, 13.748385419000002, 54.180724794999996], 'GSM2385018': [14.819206488999999, 8.212299725, 52.16098627, 12.798530397, 53.765180505000004], 'GSM2385019': [15.876402774999999, 8.576060111, 51.28516764, 12.668516589, 54.191956889], 'GSM2385020': [14.48658735, 7.58231813, 53.670389927, 11.781253303, 55.029052283], 'GSM2385021': [15.65494353, 8.111493618, 52.78105333, 14.261516819, 55.185443042], 'GSM2385022': [14.577264930999998, 7.75022229, 53.30248322, 14.130206511, 55.229279775], 'GSM2385023': [15.529973493, 8.82109375, 51.710371759, 14.739540308, 57.263331858], 'GSM2385024': [15.111038657999998, 8.073654432, 52.179198576000005, 12.496934136, 56.002521074], 'GSM2385025': [13.541145989, 7.306880922, 52.245013148, 13.048745054000001, 55.083300868], 'GSM2385026': [15.111187894, 7.992965413, 54.328526858, 14.013631092999999, 56.702920637], 'GSM2385027': [15.213319873, 7.941871715, 51.302119452, 15.751812274, 54.158003797], 'GSM2385028': [15.70413072, 8.198860323, 52.332991231, 13.49559169, 53.631963457], 'GSM2385029': [15.485183658, 8.347006356, 52.136574784, 13.469957613, 55.116181289000004], 'GSM2385030': [14.900638195, 7.720622632, 52.923258712, 13.20840544, 52.269659554], 'GSM2385031': [16.611080557999998, 8.092669967, 53.112361763, 14.623842935999999, 53.425837365999996], 'GSM2385032': [15.571421111, 7.443864903, 55.0994147, 13.007856664, 53.155939671], 'GSM2385033': [14.686113411000001, 7.618498707, 50.083039758, 13.311484055, 50.499093965], 'GSM2385034': [15.364851178, 7.499608395, 50.35582029, 12.613507816, 52.173573264], 'GSM2385035': [15.132000505, 8.120731429, 51.171741685, 14.353948901999999, 54.278229549], 'GSM2385036': [14.505476922, 7.331412445, 51.088138344, 12.913108055999999, 52.938893421], 'GSM2385037': [16.046297227, 7.322498675, 51.105411921, 14.117723706, 53.187425196], 'GSM2385038': [14.857020556, 7.940107347, 50.375326833, 14.061970324999999, 54.62659122], 'GSM2385039': [15.846563862, 8.227280502, 50.889484698, 15.666275854, 54.143308817], 'GSM2385040': [15.559565976, 7.907830307, 51.604173284, 16.268928844, 53.174938775], 'GSM2385041': [15.413747365999999, 7.589686956, 50.903912476, 14.218158823, 53.794679445999996], 'GSM2385042': [14.5670214, 7.637700066, 50.308158782, 13.009492926, 53.870992255000004], 'GSM2385043': [14.756374899, 7.178712463, 50.080431688, 13.262197439000001, 55.507489918], 'GSM2385044': [14.376650598000001, 7.655983527, 50.933661795, 13.182086607, 55.343419631], 'GSM2385045': [14.738657127, 7.3039701, 51.710737219, 12.983294851, 54.536021452], 'GSM2385046': [15.170870818000001, 8.458502577, 53.408662614, 14.829188833, 52.704166898], 'GSM2385047': [14.620981407, 8.073910768, 52.955015965, 12.570423017, 53.11236176], 'GSM2385048': [14.808742795, 8.372133338, 53.919817755, 15.728971741999999, 52.872015266999995], 'GSM2385049': [14.585242728, 7.886828321, 55.70574901, 13.222675299999999, 51.968207482], 'GSM2385050': [15.101490652999999, 7.928672676, 50.499033555, 13.090782861000001, 54.664384543000004], 'GSM2385051': [15.717994099000002, 8.31032027, 52.93781385, 14.500482727000001, 55.806470327], 'GSM2385052': [16.547174634, 9.100800699, 54.982450951, 14.876630493, 56.438342568], 'GSM2385053': [15.739588716, 8.954960387, 52.483743328, 13.077261503999999, 53.909325028], 'GSM2385054': [14.237906667, 7.155351085, 51.006174055, 16.444504097, 55.934922519], 'GSM2385055': [14.92436364, 8.157209816, 53.376186268, 13.512893534, 55.938399993], 'GSM2385056': [15.840823648, 8.858657247, 53.2102955, 13.598115105, 54.589459178], 'GSM2385057': [14.564718556, 7.638663085, 50.984540842, 13.361839088, 55.202378098000004], 'GSM2385058': [15.386636787999999, 7.829753055, 52.953470342, 12.772344315, 54.99083641], 'GSM2385059': [14.972720339999999, 7.516198718, 51.643701233, 13.23635557, 57.343746733], 'GSM2385060': [14.658821205, 7.717508676, 52.560277625, 12.114741736, 54.035343806], 'GSM2385061': [14.214400051, 7.513471379, 51.568264626, 12.719771122000001, 55.358105896], 'GSM2385062': [14.099161602999999, 7.343204566, 51.333106698, 13.716296771, 55.902731573000004], 'GSM2385063': [15.334620407, 8.396146981, 53.735794094, 13.191376559, 54.960219734], 'GSM2385064': [15.574329182, 8.153710995, 52.845437511, 13.487588744, 55.318984872], 'GSM2385065': [14.690375161999999, 7.204149609, 53.828852575, 13.491544694, 56.926083055], 'GSM2385066': [15.674146073, 8.415919254, 53.877589587, 13.203544693, 55.434212141], 'GSM2385067': [15.149495808000001, 8.544201954, 52.485083438000004, 13.216461777, 54.366214208], 'GSM2385068': [15.527440821999999, 7.909698395, 51.248131147, 13.172575583, 53.454378778], 'GSM2385069': [15.32988939, 7.658055674, 51.906220305, 12.7001431, 53.870374436999995], 'GSM2385070': [16.440549845, 7.486017617, 51.619788862, 13.935205700000001, 52.352218275], 'GSM2385071': [14.989884606, 7.827727788, 51.543886938, 14.69256489, 52.948318205], 'GSM2385072': [15.455404185999999, 8.050743046, 51.290870891, 15.097122635, 56.457179194], 'GSM2385073': [15.187629216000001, 7.920919738, 51.823229574, 12.541705622999999, 56.659672981], 'GSM2385074': [14.091874915, 6.556090105, 50.49071153, 15.219592824, 55.679745118], 'GSM2385075': [15.2774536, 8.118551773, 49.802184146, 13.507086705999999, 54.369096243], 'GSM2385076': [15.865966708, 7.787725419, 52.468968021, 12.332554507, 53.90200186], 'GSM2385077': [16.074090873000003, 7.971234696, 53.28191384, 12.811633103, 54.668493264], 'GSM2385078': [15.386969381, 7.947276281, 52.113959101999995, 12.754715299, 51.153337782], 'GSM2385079': [14.906581883000001, 7.715410709, 52.443090622, 12.996738338, 52.117884591], 'GSM2385080': [15.105451233, 8.344718475, 52.865962033, 11.570669122, 52.788539824], 'GSM2385081': [15.717026044, 8.208283628, 54.361542026, 12.567853789, 53.555846783]}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Intellectual_Disability/gene_data/GSE89594.csv\n"
]
}
],
"source": [
"# 1. Identifying the correct columns for mapping\n",
"# From the annotation preview, we can see:\n",
"# 'ID' in gene annotation corresponds to gene identifiers in the expression data\n",
"# 'GENE_SYMBOL' contains the gene symbols we want to map to\n",
"\n",
"# 2. Getting the gene mapping dataframe\n",
"print(\"Creating gene mapping dataframe...\")\n",
"mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')\n",
"print(f\"Created mapping dataframe with {len(mapping_df)} rows\")\n",
"\n",
"# Preview the mapping\n",
"print(\"\\nMapping preview (first few rows):\")\n",
"print(preview_df(mapping_df))\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
"print(\"\\nApplying gene mapping to convert probe data to gene expression data...\")\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"print(f\"Converted gene expression data has {len(gene_data)} genes and {gene_data.shape[1]} samples\")\n",
"\n",
"# Preview the gene expression data\n",
"print(\"\\nGene expression data preview (first few genes):\")\n",
"print(preview_df(gene_data))\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "d6047985",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5caa25a0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T07:11:20.725192Z",
"iopub.status.busy": "2025-03-25T07:11:20.725058Z",
"iopub.status.idle": "2025-03-25T07:11:34.174666Z",
"shell.execute_reply": "2025-03-25T07:11:34.174006Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols in the expression data...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Intellectual_Disability/gene_data/GSE89594.csv\n",
"Normalized gene data shape: (19847, 94)\n",
"\n",
"Loading clinical data from file...\n",
"Clinical data shape: (3, 94)\n",
"\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (94, 19850)\n",
"\n",
"Handling missing values...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"After handling missing values, data shape: (94, 19850)\n",
"\n",
"Checking for bias in features...\n",
"For the feature 'Intellectual_Disability', the least common label is '1.0' with 32 occurrences. This represents 34.04% of the dataset.\n",
"The distribution of the feature 'Intellectual_Disability' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 20.0\n",
" 50% (Median): 22.5\n",
" 75%: 27.0\n",
"Min: 10.0\n",
"Max: 43.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 47 occurrences. This represents 50.00% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"\n",
"Performing final validation...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Intellectual_Disability/GSE89594.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols in the expression data...\")\n",
"try:\n",
" # If previous steps have already loaded gene_data\n",
" normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
" \n",
" # Save normalized gene data\n",
" normalized_gene_data.to_csv(out_gene_data_file)\n",
" print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
" print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
"except Exception as e:\n",
" print(f\"Error normalizing gene data: {e}\")\n",
" is_gene_available = False\n",
"\n",
"# 2. Load clinical data from file and link with genetic data\n",
"print(\"\\nLoading clinical data from file...\")\n",
"try:\n",
" # Load the previously saved clinical data\n",
" selected_clinical_df = pd.read_csv(out_clinical_data_file)\n",
" \n",
" # Set is_trait_available based on whether the clinical data contains the trait\n",
" is_trait_available = True\n",
" print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
" \n",
" print(\"\\nLinking clinical and genetic data...\")\n",
" # Format clinical data for linking - transpose it so samples are rows\n",
" clinical_df_t = selected_clinical_df.T\n",
" clinical_df_t.columns = [trait, 'Age', 'Gender']\n",
" \n",
" # Link clinical and genetic data\n",
" linked_data = pd.merge(clinical_df_t, normalized_gene_data.T, \n",
" left_index=True, right_index=True)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
" \n",
" # 3. Handle missing values systematically\n",
" print(\"\\nHandling missing values...\")\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"After handling missing values, data shape: {linked_data.shape}\")\n",
" \n",
" # 4. Determine whether features are biased\n",
" print(\"\\nChecking for bias in features...\")\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
" # 5. Final validation and save metadata\n",
" print(\"\\nPerforming final validation...\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Williams Syndrome patients as intellectual disability cases, with ASD and controls as reference group.\"\n",
" )\n",
" \n",
" # 6. Save the linked data if usable\n",
" if is_usable:\n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" \n",
" # Save linked data\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(f\"Dataset not usable for {trait} association studies. Data not saved.\")\n",
"\n",
"except Exception as e:\n",
" print(f\"Error in data linking or processing: {e}\")\n",
" # Create a minimal dataframe for validation purposes\n",
" linked_data = pd.DataFrame({trait: [0, 1]})\n",
" \n",
" # Perform final validation with appropriate flags\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available,\n",
" is_biased=True, # Not relevant since data isn't usable\n",
" df=linked_data,\n",
" note=\"Failed to link gene and clinical data: \" + str(e)\n",
" )\n",
" print(f\"Dataset usability: {is_usable}\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|