File size: 40,268 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "e0933817",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:09.346344Z",
     "iopub.status.busy": "2025-03-25T07:11:09.346178Z",
     "iopub.status.idle": "2025-03-25T07:11:09.513099Z",
     "shell.execute_reply": "2025-03-25T07:11:09.512640Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Intellectual_Disability\"\n",
    "cohort = \"GSE89594\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Intellectual_Disability\"\n",
    "in_cohort_dir = \"../../input/GEO/Intellectual_Disability/GSE89594\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Intellectual_Disability/GSE89594.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Intellectual_Disability/gene_data/GSE89594.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Intellectual_Disability/clinical_data/GSE89594.csv\"\n",
    "json_path = \"../../output/preprocess/Intellectual_Disability/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b1e9259d",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "c9ba9662",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:09.514640Z",
     "iopub.status.busy": "2025-03-25T07:11:09.514483Z",
     "iopub.status.idle": "2025-03-25T07:11:09.886511Z",
     "shell.execute_reply": "2025-03-25T07:11:09.885840Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Integrated network analysis reveals genotype-phenotype correlations in Williams syndrome\"\n",
      "!Series_summary\t\"Williams Syndrome (WS) is a rare neurodevelopmental disorder caused by heterozygous deletions in a chromosome 7q11.23 region typically encompassing 26-28 genes. WS patients exhibit a wide spectrum of symptoms, including cardiovascular disease, intellectual disability, visuospatial deficits and hypersociability a behavioral profile that contrasts with autism spectrum disorder (ASD). However, the relationship between neuropsychiatric phenotypes and dysregulated gene networks caused by the 7q11.23 deletion is unknown. We report results from a large-scale integrated transcriptome analysis of peripheral blood in clinically evaluated subjects with WS, ASD and matched controls. We identified significantly differential expressed genes in WS as compared with ASD or controls, even after removing genes spanning the 7q11.23 region. Using weighted gene co-expression network analysis (WGCNA), we found that three co-expression modules were upregulated in WS, and were significantly associated with the intermediate phenotypes such as anxiety and attention problems. Notably, these three co-expression modules were only composed of genes located outside of 7q11.23 critical region. One module was associated with immune systems and B cell proliferation. Its top hub gene, BCL11A, is implicated in ASD and chromatin modification. Another module was enriched with genes associated with astrocytes and oligodendrocytes, and the third module was associated with RNA processing and neurons. MicroRNA (miRNA) profiling revealed differentially expressed miRNAs whose targets were enriched in each co-expression module associated with WS. These results identify genes and potential driver miRNAs, located outside of 7q11.23 critical region, that are novel candidates for mediating the neuropsychiatric phenotypes in WS.\"\n",
      "!Series_overall_design\t\"We profiled gene expression from 32 WS patients, 32 ASD patients and 30 controls using peripheral blood.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['diagnosis: control', 'diagnosis: autism spectrum disorder (ASD)', 'diagnosis: Williams Syndrome (WS)'], 1: ['tissue: whole blood'], 2: ['age: 22y', 'age: 23y', 'age: 24y', 'age: 33y', 'age: 21y', 'age: 20y', 'age: 28y', 'age: 25y', 'age: 32y', 'age: 36y', 'age: 30y', 'age: 27y', 'age: 31y', 'age: 35y', 'age: 10y', 'age: 16y', 'age: 11y', 'age: 12y', 'age: 38y', 'age: 34y', 'age: 29y', 'age: 19y', 'age: 13y', 'age: 15y', 'age: 43y', 'age: 14y', 'age: 17y', 'age: 39y', 'age: 26y'], 3: ['gender: female', 'gender: male']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "6a7a55c0",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "98aaf20b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:09.887907Z",
     "iopub.status.busy": "2025-03-25T07:11:09.887784Z",
     "iopub.status.idle": "2025-03-25T07:11:09.914595Z",
     "shell.execute_reply": "2025-03-25T07:11:09.914094Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical Data Preview:\n",
      "{'GSM2384988': [0.0, 22.0, 0.0], 'GSM2384989': [0.0, 23.0, 0.0], 'GSM2384990': [0.0, 24.0, 0.0], 'GSM2384991': [0.0, 24.0, 0.0], 'GSM2384992': [0.0, 33.0, 1.0], 'GSM2384993': [0.0, 22.0, 1.0], 'GSM2384994': [0.0, 24.0, 0.0], 'GSM2384995': [0.0, 21.0, 1.0], 'GSM2384996': [0.0, 24.0, 1.0], 'GSM2384997': [0.0, 20.0, 0.0], 'GSM2384998': [0.0, 28.0, 0.0], 'GSM2384999': [0.0, 21.0, 1.0], 'GSM2385000': [0.0, 21.0, 0.0], 'GSM2385001': [0.0, 22.0, 1.0], 'GSM2385002': [0.0, 25.0, 1.0], 'GSM2385003': [0.0, 23.0, 0.0], 'GSM2385004': [0.0, 20.0, 0.0], 'GSM2385005': [0.0, 21.0, 1.0], 'GSM2385006': [0.0, 20.0, 0.0], 'GSM2385007': [0.0, 32.0, 1.0], 'GSM2385008': [0.0, 36.0, 0.0], 'GSM2385009': [0.0, 24.0, 1.0], 'GSM2385010': [0.0, 21.0, 1.0], 'GSM2385011': [0.0, 30.0, 0.0], 'GSM2385012': [0.0, 28.0, 1.0], 'GSM2385013': [0.0, 22.0, 1.0], 'GSM2385014': [0.0, 24.0, 0.0], 'GSM2385015': [0.0, 21.0, 1.0], 'GSM2385016': [0.0, 22.0, 1.0], 'GSM2385017': [0.0, 20.0, 0.0], 'GSM2385018': [0.0, 27.0, 0.0], 'GSM2385019': [0.0, 22.0, 0.0], 'GSM2385020': [0.0, 23.0, 1.0], 'GSM2385021': [0.0, 20.0, 1.0], 'GSM2385022': [0.0, 31.0, 1.0], 'GSM2385023': [0.0, 27.0, 0.0], 'GSM2385024': [0.0, 32.0, 1.0], 'GSM2385025': [0.0, 20.0, 1.0], 'GSM2385026': [0.0, 36.0, 1.0], 'GSM2385027': [0.0, 22.0, 0.0], 'GSM2385028': [0.0, 28.0, 0.0], 'GSM2385029': [0.0, 25.0, 0.0], 'GSM2385030': [0.0, 35.0, 1.0], 'GSM2385031': [0.0, 22.0, 0.0], 'GSM2385032': [0.0, 22.0, 1.0], 'GSM2385033': [0.0, 10.0, 1.0], 'GSM2385034': [0.0, 16.0, 0.0], 'GSM2385035': [0.0, 10.0, 0.0], 'GSM2385036': [0.0, 33.0, 1.0], 'GSM2385037': [0.0, 21.0, 0.0], 'GSM2385038': [0.0, 11.0, 1.0], 'GSM2385039': [0.0, 10.0, 1.0], 'GSM2385040': [0.0, 35.0, 0.0], 'GSM2385041': [0.0, 12.0, 1.0], 'GSM2385042': [0.0, 38.0, 0.0], 'GSM2385043': [0.0, 24.0, 1.0], 'GSM2385044': [0.0, 34.0, 1.0], 'GSM2385045': [0.0, 32.0, 0.0], 'GSM2385046': [0.0, 21.0, 0.0], 'GSM2385047': [0.0, 29.0, 0.0], 'GSM2385048': [0.0, 20.0, 1.0], 'GSM2385049': [0.0, 19.0, 0.0], 'GSM2385050': [1.0, 24.0, 1.0], 'GSM2385051': [1.0, 13.0, 0.0], 'GSM2385052': [1.0, 23.0, 0.0], 'GSM2385053': [1.0, 15.0, 0.0], 'GSM2385054': [1.0, 43.0, 0.0], 'GSM2385055': [1.0, 10.0, 1.0], 'GSM2385056': [1.0, 13.0, 0.0], 'GSM2385057': [1.0, 16.0, 0.0], 'GSM2385058': [1.0, 27.0, 1.0], 'GSM2385059': [1.0, 24.0, 0.0], 'GSM2385060': [1.0, 11.0, 1.0], 'GSM2385061': [1.0, 24.0, 1.0], 'GSM2385062': [1.0, 32.0, 0.0], 'GSM2385063': [1.0, 24.0, 0.0], 'GSM2385064': [1.0, 27.0, 0.0], 'GSM2385065': [1.0, 16.0, 1.0], 'GSM2385066': [1.0, 14.0, 0.0], 'GSM2385067': [1.0, 11.0, 1.0], 'GSM2385068': [1.0, 24.0, 1.0], 'GSM2385069': [1.0, 28.0, 1.0], 'GSM2385070': [1.0, 17.0, 1.0], 'GSM2385071': [1.0, 15.0, 0.0], 'GSM2385072': [1.0, 34.0, 0.0], 'GSM2385073': [1.0, 39.0, 1.0], 'GSM2385074': [1.0, 12.0, 1.0], 'GSM2385075': [1.0, 15.0, 0.0], 'GSM2385076': [1.0, 21.0, 0.0], 'GSM2385077': [1.0, 29.0, 0.0], 'GSM2385078': [1.0, 23.0, 1.0], 'GSM2385079': [1.0, 26.0, 1.0], 'GSM2385080': [1.0, 19.0, 1.0], 'GSM2385081': [1.0, 21.0, 1.0]}\n",
      "Clinical data saved to ../../output/preprocess/Intellectual_Disability/clinical_data/GSE89594.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# The background information suggests this dataset contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Identify rows for each variable in the sample characteristics\n",
    "\n",
    "# For trait (Intellectual Disability):\n",
    "# The diagnosis row (0) contains Williams Syndrome, ASD, and control status\n",
    "# Williams Syndrome is associated with intellectual disability according to the background info\n",
    "trait_row = 0\n",
    "\n",
    "# For age:\n",
    "# Age information is available in row 2\n",
    "age_row = 2\n",
    "\n",
    "# For gender:\n",
    "# Gender information is available in row 3\n",
    "gender_row = 3\n",
    "\n",
    "# 2.2 Data Type Conversion Functions\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"\n",
    "    Convert diagnosis to intellectual disability status\n",
    "    Williams Syndrome (WS) has intellectual disability = 1\n",
    "    Control and ASD are set to 0\n",
    "    \"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    diagnosis = value.split(':', 1)[1].strip().lower()\n",
    "    \n",
    "    if 'williams syndrome' in diagnosis or 'ws' in diagnosis:\n",
    "        return 1  # Williams Syndrome patients have intellectual disability\n",
    "    elif 'control' in diagnosis or 'asd' in diagnosis or 'autism' in diagnosis:\n",
    "        return 0  # Controls and ASD patients are the reference group\n",
    "    else:\n",
    "        return None  # Unknown values\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age string to numeric value in years\"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    try:\n",
    "        # Extract the age value, typically in format \"age: XXy\"\n",
    "        age_str = value.split(':', 1)[1].strip()\n",
    "        # Remove 'y' and convert to integer\n",
    "        if 'y' in age_str:\n",
    "            age = int(age_str.replace('y', '').strip())\n",
    "            return age\n",
    "        else:\n",
    "            return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary: female=0, male=1\"\"\"\n",
    "    if not value or ':' not in value:\n",
    "        return None\n",
    "    \n",
    "    gender = value.split(':', 1)[1].strip().lower()\n",
    "    \n",
    "    if 'female' in gender:\n",
    "        return 0\n",
    "    elif 'male' in gender:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Conduct initial filtering\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the clinical data\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "c6c512db",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "0d851347",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:09.915978Z",
     "iopub.status.busy": "2025-03-25T07:11:09.915862Z",
     "iopub.status.idle": "2025-03-25T07:11:10.524470Z",
     "shell.execute_reply": "2025-03-25T07:11:10.523908Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting gene data from matrix file:\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully extracted gene data with 62976 rows\n",
      "First 20 gene IDs:\n",
      "Index(['1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',\n",
      "       '14', '15', '16', '17', '18', '19', '20'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene expression data available: True\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract gene expression data from the matrix file\n",
    "try:\n",
    "    print(\"Extracting gene data from matrix file:\")\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    if gene_data.empty:\n",
    "        print(\"Extracted gene expression data is empty\")\n",
    "        is_gene_available = False\n",
    "    else:\n",
    "        print(f\"Successfully extracted gene data with {len(gene_data.index)} rows\")\n",
    "        print(\"First 20 gene IDs:\")\n",
    "        print(gene_data.index[:20])\n",
    "        is_gene_available = True\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n",
    "    print(\"This dataset appears to have an empty or malformed gene expression matrix\")\n",
    "    is_gene_available = False\n",
    "\n",
    "print(f\"\\nGene expression data available: {is_gene_available}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9cd7aa4b",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "2149d5d8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:10.526225Z",
     "iopub.status.busy": "2025-03-25T07:11:10.526088Z",
     "iopub.status.idle": "2025-03-25T07:11:10.528414Z",
     "shell.execute_reply": "2025-03-25T07:11:10.527975Z"
    }
   },
   "outputs": [],
   "source": [
    "# The extracted gene IDs appear to be numeric identifiers (1, 2, 3, etc.)\n",
    "# These are not standard human gene symbols, which would typically be alphanumeric \n",
    "# identifiers like BRCA1, TP53, etc.\n",
    "# Therefore, these identifiers need to be mapped to proper gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "09b9bb93",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "32ec005c",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:10.529720Z",
     "iopub.status.busy": "2025-03-25T07:11:10.529603Z",
     "iopub.status.idle": "2025-03-25T07:11:19.022905Z",
     "shell.execute_reply": "2025-03-25T07:11:19.022265Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Extracting gene annotation data from SOFT file...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Successfully extracted gene annotation data with 5982814 rows\n",
      "\n",
      "Gene annotation preview (first few rows):\n",
      "{'ID': ['1', '2', '3', '4', '5'], 'COL': ['192', '192', '192', '192', '192'], 'ROW': [328.0, 326.0, 324.0, 322.0, 320.0], 'NAME': ['GE_BrightCorner', 'DarkCorner', 'DarkCorner', 'A_23_P117082', 'A_33_P3246448'], 'SPOT_ID': ['CONTROL', 'CONTROL', 'CONTROL', 'A_23_P117082', 'A_33_P3246448'], 'CONTROL_TYPE': ['pos', 'pos', 'pos', 'FALSE', 'FALSE'], 'REFSEQ': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'GB_ACC': [nan, nan, nan, 'NM_015987', 'NM_080671'], 'LOCUSLINK_ID': [nan, nan, nan, 50865.0, 23704.0], 'GENE_SYMBOL': [nan, nan, nan, 'HEBP1', 'KCNE4'], 'GENE_NAME': [nan, nan, nan, 'heme binding protein 1', 'potassium voltage-gated channel, Isk-related family, member 4'], 'UNIGENE_ID': [nan, nan, nan, 'Hs.642618', 'Hs.348522'], 'ENSEMBL_ID': [nan, nan, nan, 'ENST00000014930', 'ENST00000281830'], 'ACCESSION_STRING': [nan, nan, nan, 'ref|NM_015987|ens|ENST00000014930|gb|AF117615|gb|BC016277', 'ref|NM_080671|ens|ENST00000281830|tc|THC2655788'], 'CHROMOSOMAL_LOCATION': [nan, nan, nan, 'chr12:13127906-13127847', 'chr2:223920197-223920256'], 'CYTOBAND': [nan, nan, nan, 'hs|12p13.1', 'hs|2q36.1'], 'DESCRIPTION': [nan, nan, nan, 'Homo sapiens heme binding protein 1 (HEBP1), mRNA [NM_015987]', 'Homo sapiens potassium voltage-gated channel, Isk-related family, member 4 (KCNE4), mRNA [NM_080671]'], 'GO_ID': [nan, nan, nan, 'GO:0005488(binding)|GO:0005576(extracellular region)|GO:0005737(cytoplasm)|GO:0005739(mitochondrion)|GO:0005829(cytosol)|GO:0007623(circadian rhythm)|GO:0020037(heme binding)', 'GO:0005244(voltage-gated ion channel activity)|GO:0005249(voltage-gated potassium channel activity)|GO:0006811(ion transport)|GO:0006813(potassium ion transport)|GO:0016020(membrane)|GO:0016021(integral to membrane)|GO:0016324(apical plasma membrane)'], 'SEQUENCE': [nan, nan, nan, 'AAGGGGGAAAATGTGATTTGTGCCTGATCTTTCATCTGTGATTCTTATAAGAGCTTTGTC', 'GCAAGTCTCTCTGCACCTATTAAAAAGTGATGTATATACTTCCTTCTTATTCTGTTGAGT']}\n",
      "\n",
      "Column names in gene annotation data:\n",
      "['ID', 'COL', 'ROW', 'NAME', 'SPOT_ID', 'CONTROL_TYPE', 'REFSEQ', 'GB_ACC', 'LOCUSLINK_ID', 'GENE_SYMBOL', 'GENE_NAME', 'UNIGENE_ID', 'ENSEMBL_ID', 'ACCESSION_STRING', 'CHROMOSOMAL_LOCATION', 'CYTOBAND', 'DESCRIPTION', 'GO_ID', 'SEQUENCE']\n",
      "\n",
      "The dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\n",
      "Number of rows with GenBank accessions: 46262 out of 5982814\n",
      "\n",
      "The dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\n",
      "Example SPOT_ID format: CONTROL\n"
     ]
    }
   ],
   "source": [
    "# 1. Extract gene annotation data from the SOFT file\n",
    "print(\"Extracting gene annotation data from SOFT file...\")\n",
    "try:\n",
    "    # Use the library function to extract gene annotation\n",
    "    gene_annotation = get_gene_annotation(soft_file)\n",
    "    print(f\"Successfully extracted gene annotation data with {len(gene_annotation.index)} rows\")\n",
    "    \n",
    "    # Preview the annotation DataFrame\n",
    "    print(\"\\nGene annotation preview (first few rows):\")\n",
    "    print(preview_df(gene_annotation))\n",
    "    \n",
    "    # Show column names to help identify which columns we need for mapping\n",
    "    print(\"\\nColumn names in gene annotation data:\")\n",
    "    print(gene_annotation.columns.tolist())\n",
    "    \n",
    "    # Check for relevant mapping columns\n",
    "    if 'GB_ACC' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains GenBank accessions (GB_ACC) that could be used for gene mapping.\")\n",
    "        # Count non-null values in GB_ACC column\n",
    "        non_null_count = gene_annotation['GB_ACC'].count()\n",
    "        print(f\"Number of rows with GenBank accessions: {non_null_count} out of {len(gene_annotation)}\")\n",
    "    \n",
    "    if 'SPOT_ID' in gene_annotation.columns:\n",
    "        print(\"\\nThe dataset contains genomic regions (SPOT_ID) that could be used for location-based gene mapping.\")\n",
    "        print(\"Example SPOT_ID format:\", gene_annotation['SPOT_ID'].iloc[0])\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation data: {e}\")\n",
    "    is_gene_available = False\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f28fb34d",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "5c910e0a",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:19.024365Z",
     "iopub.status.busy": "2025-03-25T07:11:19.024227Z",
     "iopub.status.idle": "2025-03-25T07:11:20.723431Z",
     "shell.execute_reply": "2025-03-25T07:11:20.722883Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Creating gene mapping dataframe...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Created mapping dataframe with 54295 rows\n",
      "\n",
      "Mapping preview (first few rows):\n",
      "{'ID': ['4', '5', '6', '7', '8'], 'Gene': ['HEBP1', 'KCNE4', 'BPIFA3', 'LOC100129869', 'IRG1']}\n",
      "\n",
      "Applying gene mapping to convert probe data to gene expression data...\n",
      "Converted gene expression data has 20353 genes and 94 samples\n",
      "\n",
      "Gene expression data preview (first few genes):\n",
      "{'GSM2384988': [14.514778639, 7.770994141, 50.618383177, 15.846223135999999, 54.533775519], 'GSM2384989': [16.325146179, 8.384069535, 50.382498582, 13.472051642, 52.761437181], 'GSM2384990': [15.077915928, 8.309437624, 53.497208234, 12.255831167, 53.993246103], 'GSM2384991': [16.024857048999998, 8.676199029, 52.469042418, 13.262691837, 53.174300299], 'GSM2384992': [14.205910164, 7.552051737, 54.605664255, 12.584846452, 54.944290563], 'GSM2384993': [15.044565859999999, 8.225743264, 52.634522866, 15.048242242, 56.156791729], 'GSM2384994': [15.585593495000001, 8.360763022, 53.430031596999996, 14.791714749, 54.135796581], 'GSM2384995': [15.414802946, 8.531130458, 52.296378531, 14.445646477, 53.741951262], 'GSM2384996': [15.46544158, 8.563681049, 53.578278128, 12.548410853, 54.320390376999995], 'GSM2384997': [15.188334992, 7.645462936, 51.604801099, 13.380607658, 54.028049941999996], 'GSM2384998': [15.208071473, 8.279509301, 51.628808728, 13.351027239, 54.965215073], 'GSM2384999': [14.384843081, 7.334482451, 52.500885618, 13.299840404000001, 53.994465181], 'GSM2385000': [16.228508343, 8.891434682, 52.677444221, 13.885018113000001, 53.644934982], 'GSM2385001': [15.820834405, 7.60677528, 52.941566787, 13.558493768999998, 53.682858379], 'GSM2385002': [15.542246628000001, 8.092374769, 54.296462787, 16.713950541, 55.817701374], 'GSM2385003': [15.606203765, 8.264801891, 51.017499604, 13.733707238000001, 51.878050808], 'GSM2385004': [14.788525489000001, 7.739471785, 51.129183428, 14.822868383, 53.632104864], 'GSM2385005': [15.588141816, 7.589906046, 51.438637842, 14.973570751, 55.54198422], 'GSM2385006': [15.221691556, 7.791332601, 53.387527762, 13.350007868999999, 58.38351915], 'GSM2385007': [15.182614898, 7.681608464, 51.602260008, 12.809864700999999, 54.336897011], 'GSM2385008': [15.064500563, 7.910942444, 50.564818677, 13.777841789, 53.042786054], 'GSM2385009': [14.415959057, 7.374549275, 50.234938056000004, 15.405982466, 60.094031696], 'GSM2385010': [15.252155449, 7.847153958, 50.769850901, 15.405021224, 54.049617201000004], 'GSM2385011': [14.325024884000001, 7.654060804, 51.234199409, 14.613404854999999, 52.574568599], 'GSM2385012': [14.574575793, 7.471843766, 50.988408294, 13.599394983, 56.197646129], 'GSM2385013': [14.612004424000002, 7.520175579, 50.412711681000005, 15.167934099, 54.784828061], 'GSM2385014': [15.034733809999999, 7.499608395, 50.915542939, 14.391980108000002, 53.135274698], 'GSM2385015': [15.441442778999999, 7.183445276, 50.006158191000004, 12.7894979, 51.740860614999995], 'GSM2385016': [14.808675599, 7.394731718, 50.677859092, 13.127278580999999, 56.663544262], 'GSM2385017': [16.028678433, 7.285790726, 51.17731261, 13.748385419000002, 54.180724794999996], 'GSM2385018': [14.819206488999999, 8.212299725, 52.16098627, 12.798530397, 53.765180505000004], 'GSM2385019': [15.876402774999999, 8.576060111, 51.28516764, 12.668516589, 54.191956889], 'GSM2385020': [14.48658735, 7.58231813, 53.670389927, 11.781253303, 55.029052283], 'GSM2385021': [15.65494353, 8.111493618, 52.78105333, 14.261516819, 55.185443042], 'GSM2385022': [14.577264930999998, 7.75022229, 53.30248322, 14.130206511, 55.229279775], 'GSM2385023': [15.529973493, 8.82109375, 51.710371759, 14.739540308, 57.263331858], 'GSM2385024': [15.111038657999998, 8.073654432, 52.179198576000005, 12.496934136, 56.002521074], 'GSM2385025': [13.541145989, 7.306880922, 52.245013148, 13.048745054000001, 55.083300868], 'GSM2385026': [15.111187894, 7.992965413, 54.328526858, 14.013631092999999, 56.702920637], 'GSM2385027': [15.213319873, 7.941871715, 51.302119452, 15.751812274, 54.158003797], 'GSM2385028': [15.70413072, 8.198860323, 52.332991231, 13.49559169, 53.631963457], 'GSM2385029': [15.485183658, 8.347006356, 52.136574784, 13.469957613, 55.116181289000004], 'GSM2385030': [14.900638195, 7.720622632, 52.923258712, 13.20840544, 52.269659554], 'GSM2385031': [16.611080557999998, 8.092669967, 53.112361763, 14.623842935999999, 53.425837365999996], 'GSM2385032': [15.571421111, 7.443864903, 55.0994147, 13.007856664, 53.155939671], 'GSM2385033': [14.686113411000001, 7.618498707, 50.083039758, 13.311484055, 50.499093965], 'GSM2385034': [15.364851178, 7.499608395, 50.35582029, 12.613507816, 52.173573264], 'GSM2385035': [15.132000505, 8.120731429, 51.171741685, 14.353948901999999, 54.278229549], 'GSM2385036': [14.505476922, 7.331412445, 51.088138344, 12.913108055999999, 52.938893421], 'GSM2385037': [16.046297227, 7.322498675, 51.105411921, 14.117723706, 53.187425196], 'GSM2385038': [14.857020556, 7.940107347, 50.375326833, 14.061970324999999, 54.62659122], 'GSM2385039': [15.846563862, 8.227280502, 50.889484698, 15.666275854, 54.143308817], 'GSM2385040': [15.559565976, 7.907830307, 51.604173284, 16.268928844, 53.174938775], 'GSM2385041': [15.413747365999999, 7.589686956, 50.903912476, 14.218158823, 53.794679445999996], 'GSM2385042': [14.5670214, 7.637700066, 50.308158782, 13.009492926, 53.870992255000004], 'GSM2385043': [14.756374899, 7.178712463, 50.080431688, 13.262197439000001, 55.507489918], 'GSM2385044': [14.376650598000001, 7.655983527, 50.933661795, 13.182086607, 55.343419631], 'GSM2385045': [14.738657127, 7.3039701, 51.710737219, 12.983294851, 54.536021452], 'GSM2385046': [15.170870818000001, 8.458502577, 53.408662614, 14.829188833, 52.704166898], 'GSM2385047': [14.620981407, 8.073910768, 52.955015965, 12.570423017, 53.11236176], 'GSM2385048': [14.808742795, 8.372133338, 53.919817755, 15.728971741999999, 52.872015266999995], 'GSM2385049': [14.585242728, 7.886828321, 55.70574901, 13.222675299999999, 51.968207482], 'GSM2385050': [15.101490652999999, 7.928672676, 50.499033555, 13.090782861000001, 54.664384543000004], 'GSM2385051': [15.717994099000002, 8.31032027, 52.93781385, 14.500482727000001, 55.806470327], 'GSM2385052': [16.547174634, 9.100800699, 54.982450951, 14.876630493, 56.438342568], 'GSM2385053': [15.739588716, 8.954960387, 52.483743328, 13.077261503999999, 53.909325028], 'GSM2385054': [14.237906667, 7.155351085, 51.006174055, 16.444504097, 55.934922519], 'GSM2385055': [14.92436364, 8.157209816, 53.376186268, 13.512893534, 55.938399993], 'GSM2385056': [15.840823648, 8.858657247, 53.2102955, 13.598115105, 54.589459178], 'GSM2385057': [14.564718556, 7.638663085, 50.984540842, 13.361839088, 55.202378098000004], 'GSM2385058': [15.386636787999999, 7.829753055, 52.953470342, 12.772344315, 54.99083641], 'GSM2385059': [14.972720339999999, 7.516198718, 51.643701233, 13.23635557, 57.343746733], 'GSM2385060': [14.658821205, 7.717508676, 52.560277625, 12.114741736, 54.035343806], 'GSM2385061': [14.214400051, 7.513471379, 51.568264626, 12.719771122000001, 55.358105896], 'GSM2385062': [14.099161602999999, 7.343204566, 51.333106698, 13.716296771, 55.902731573000004], 'GSM2385063': [15.334620407, 8.396146981, 53.735794094, 13.191376559, 54.960219734], 'GSM2385064': [15.574329182, 8.153710995, 52.845437511, 13.487588744, 55.318984872], 'GSM2385065': [14.690375161999999, 7.204149609, 53.828852575, 13.491544694, 56.926083055], 'GSM2385066': [15.674146073, 8.415919254, 53.877589587, 13.203544693, 55.434212141], 'GSM2385067': [15.149495808000001, 8.544201954, 52.485083438000004, 13.216461777, 54.366214208], 'GSM2385068': [15.527440821999999, 7.909698395, 51.248131147, 13.172575583, 53.454378778], 'GSM2385069': [15.32988939, 7.658055674, 51.906220305, 12.7001431, 53.870374436999995], 'GSM2385070': [16.440549845, 7.486017617, 51.619788862, 13.935205700000001, 52.352218275], 'GSM2385071': [14.989884606, 7.827727788, 51.543886938, 14.69256489, 52.948318205], 'GSM2385072': [15.455404185999999, 8.050743046, 51.290870891, 15.097122635, 56.457179194], 'GSM2385073': [15.187629216000001, 7.920919738, 51.823229574, 12.541705622999999, 56.659672981], 'GSM2385074': [14.091874915, 6.556090105, 50.49071153, 15.219592824, 55.679745118], 'GSM2385075': [15.2774536, 8.118551773, 49.802184146, 13.507086705999999, 54.369096243], 'GSM2385076': [15.865966708, 7.787725419, 52.468968021, 12.332554507, 53.90200186], 'GSM2385077': [16.074090873000003, 7.971234696, 53.28191384, 12.811633103, 54.668493264], 'GSM2385078': [15.386969381, 7.947276281, 52.113959101999995, 12.754715299, 51.153337782], 'GSM2385079': [14.906581883000001, 7.715410709, 52.443090622, 12.996738338, 52.117884591], 'GSM2385080': [15.105451233, 8.344718475, 52.865962033, 11.570669122, 52.788539824], 'GSM2385081': [15.717026044, 8.208283628, 54.361542026, 12.567853789, 53.555846783]}\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Intellectual_Disability/gene_data/GSE89594.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identifying the correct columns for mapping\n",
    "# From the annotation preview, we can see:\n",
    "# 'ID' in gene annotation corresponds to gene identifiers in the expression data\n",
    "# 'GENE_SYMBOL' contains the gene symbols we want to map to\n",
    "\n",
    "# 2. Getting the gene mapping dataframe\n",
    "print(\"Creating gene mapping dataframe...\")\n",
    "mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')\n",
    "print(f\"Created mapping dataframe with {len(mapping_df)} rows\")\n",
    "\n",
    "# Preview the mapping\n",
    "print(\"\\nMapping preview (first few rows):\")\n",
    "print(preview_df(mapping_df))\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level data to gene expression data\n",
    "print(\"\\nApplying gene mapping to convert probe data to gene expression data...\")\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "print(f\"Converted gene expression data has {len(gene_data)} genes and {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Preview the gene expression data\n",
    "print(\"\\nGene expression data preview (first few genes):\")\n",
    "print(preview_df(gene_data))\n",
    "\n",
    "# Save the gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d6047985",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "5caa25a0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T07:11:20.725192Z",
     "iopub.status.busy": "2025-03-25T07:11:20.725058Z",
     "iopub.status.idle": "2025-03-25T07:11:34.174666Z",
     "shell.execute_reply": "2025-03-25T07:11:34.174006Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols in the expression data...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Intellectual_Disability/gene_data/GSE89594.csv\n",
      "Normalized gene data shape: (19847, 94)\n",
      "\n",
      "Loading clinical data from file...\n",
      "Clinical data shape: (3, 94)\n",
      "\n",
      "Linking clinical and genetic data...\n",
      "Linked data shape: (94, 19850)\n",
      "\n",
      "Handling missing values...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "After handling missing values, data shape: (94, 19850)\n",
      "\n",
      "Checking for bias in features...\n",
      "For the feature 'Intellectual_Disability', the least common label is '1.0' with 32 occurrences. This represents 34.04% of the dataset.\n",
      "The distribution of the feature 'Intellectual_Disability' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 20.0\n",
      "  50% (Median): 22.5\n",
      "  75%: 27.0\n",
      "Min: 10.0\n",
      "Max: 43.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '0.0' with 47 occurrences. This represents 50.00% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "\n",
      "Performing final validation...\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Intellectual_Disability/GSE89594.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols in the expression data...\")\n",
    "try:\n",
    "    # If previous steps have already loaded gene_data\n",
    "    normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "    \n",
    "    # Create directory if it doesn't exist\n",
    "    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "    \n",
    "    # Save normalized gene data\n",
    "    normalized_gene_data.to_csv(out_gene_data_file)\n",
    "    print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "    print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n",
    "except Exception as e:\n",
    "    print(f\"Error normalizing gene data: {e}\")\n",
    "    is_gene_available = False\n",
    "\n",
    "# 2. Load clinical data from file and link with genetic data\n",
    "print(\"\\nLoading clinical data from file...\")\n",
    "try:\n",
    "    # Load the previously saved clinical data\n",
    "    selected_clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "    \n",
    "    # Set is_trait_available based on whether the clinical data contains the trait\n",
    "    is_trait_available = True\n",
    "    print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
    "    \n",
    "    print(\"\\nLinking clinical and genetic data...\")\n",
    "    # Format clinical data for linking - transpose it so samples are rows\n",
    "    clinical_df_t = selected_clinical_df.T\n",
    "    clinical_df_t.columns = [trait, 'Age', 'Gender']\n",
    "    \n",
    "    # Link clinical and genetic data\n",
    "    linked_data = pd.merge(clinical_df_t, normalized_gene_data.T, \n",
    "                          left_index=True, right_index=True)\n",
    "    print(f\"Linked data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # 3. Handle missing values systematically\n",
    "    print(\"\\nHandling missing values...\")\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"After handling missing values, data shape: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Determine whether features are biased\n",
    "    print(\"\\nChecking for bias in features...\")\n",
    "    is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    \n",
    "    # 5. Final validation and save metadata\n",
    "    print(\"\\nPerforming final validation...\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available,\n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=is_biased,\n",
    "        df=linked_data,\n",
    "        note=\"Williams Syndrome patients as intellectual disability cases, with ASD and controls as reference group.\"\n",
    "    )\n",
    "    \n",
    "    # 6. Save the linked data if usable\n",
    "    if is_usable:\n",
    "        # Create directory if it doesn't exist\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        \n",
    "        # Save linked data\n",
    "        linked_data.to_csv(out_data_file)\n",
    "        print(f\"Linked data saved to {out_data_file}\")\n",
    "    else:\n",
    "        print(f\"Dataset not usable for {trait} association studies. Data not saved.\")\n",
    "\n",
    "except Exception as e:\n",
    "    print(f\"Error in data linking or processing: {e}\")\n",
    "    # Create a minimal dataframe for validation purposes\n",
    "    linked_data = pd.DataFrame({trait: [0, 1]})\n",
    "    \n",
    "    # Perform final validation with appropriate flags\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True,\n",
    "        cohort=cohort,\n",
    "        info_path=json_path,\n",
    "        is_gene_available=is_gene_available, \n",
    "        is_trait_available=is_trait_available,\n",
    "        is_biased=True,  # Not relevant since data isn't usable\n",
    "        df=linked_data,\n",
    "        note=\"Failed to link gene and clinical data: \" + str(e)\n",
    "    )\n",
    "    print(f\"Dataset usability: {is_usable}\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}