File size: 32,747 Bytes
d1894e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "63d9e05b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Glucocorticoid_Sensitivity\"\n",
    "cohort = \"GSE42002\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Glucocorticoid_Sensitivity\"\n",
    "in_cohort_dir = \"../../input/GEO/Glucocorticoid_Sensitivity/GSE42002\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/GSE42002.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE42002.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE42002.csv\"\n",
    "json_path = \"../../output/preprocess/Glucocorticoid_Sensitivity/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7e0b9bfe",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "f9d0eb83",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7ead27eb",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d8d983e6",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Parse and analyze the dataset\n",
    "\n",
    "# 1. Determine if gene expression data is available\n",
    "# Based on the background information, this dataset contains gene expression arrays\n",
    "# measuring mRNA expression, which indicates gene expression data is available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Identify data availability for trait, age, and gender\n",
    "\n",
    "# 2.1 Trait data (Glucocorticoid_Sensitivity) can be derived from the condition (trauma/control)\n",
    "# Looking at sample characteristics, we can see condition info at key 1\n",
    "trait_row = 1\n",
    "\n",
    "# Convert trait data (trauma/control) to binary values (0/1)\n",
    "def convert_trait(value):\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Extract value after colon if present\n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to binary (trauma=1, control=0)\n",
    "    if 'trauma' in value.lower():\n",
    "        return 1\n",
    "    elif 'control' in value.lower():\n",
    "        return 0\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 2.2 Age data is not available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "def convert_age(value):\n",
    "    # Function defined but not used since age data is unavailable\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    try:\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "# 2.3 Gender data is not available in the sample characteristics\n",
    "gender_row = None\n",
    "\n",
    "def convert_gender(value):\n",
    "    # Function defined but not used since gender data is unavailable\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    if ':' in value:\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "        \n",
    "    value = value.lower()\n",
    "    if 'female' in value or 'f' == value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value:\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial metadata about dataset usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. If trait data is available, extract and save clinical features\n",
    "if trait_row is not None:\n",
    "    # Parse the sample characteristics dictionary from the text representation\n",
    "    sample_chars_dict = {0: ['genotype: rs1360780 AA/AG', 'genotype: rs1360780 GG'], \n",
    "                       1: ['condition: trauma', 'condition: control'], \n",
    "                       2: ['tissue: whole blood']}\n",
    "    \n",
    "    # Create the clinical dataframe correctly for geo_select_clinical_features\n",
    "    clinical_data = pd.DataFrame()\n",
    "    for key, values in sample_chars_dict.items():\n",
    "        # Create a series for each row\n",
    "        clinical_data[key] = values\n",
    "    \n",
    "    # Create a clinical dataframe using the library function\n",
    "    clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the clinical dataframe\n",
    "    preview = preview_df(clinical_df)\n",
    "    print(\"Clinical Data Preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "68ba51b5",
   "metadata": {},
   "source": [
    "### Step 3: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "63eb0768",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Import necessary libraries\n",
    "import pandas as pd\n",
    "import os\n",
    "import json\n",
    "import gzip\n",
    "from typing import Optional, Callable, Dict, Any\n",
    "\n",
    "# Step 3: Analyze the dataset and extract clinical features\n",
    "\n",
    "# Function to extract sample characteristics from GEO series matrix file\n",
    "def extract_sample_characteristics(file_path):\n",
    "    with gzip.open(file_path, 'rt') as f:\n",
    "        lines = []\n",
    "        in_characteristics = False\n",
    "        geo_accessions = []\n",
    "        sample_titles = []\n",
    "        \n",
    "        for line in f:\n",
    "            if line.startswith('!Sample_characteristics_ch1'):\n",
    "                in_characteristics = True\n",
    "                lines.append(line.strip())\n",
    "            elif in_characteristics and line.startswith('!Sample_'):\n",
    "                if not line.startswith('!Sample_characteristics_ch'):\n",
    "                    in_characteristics = False\n",
    "                else:\n",
    "                    lines.append(line.strip())\n",
    "            elif line.startswith('!Sample_geo_accession'):\n",
    "                geo_accessions = line.strip().split('\\t')[1:]\n",
    "            elif line.startswith('!Sample_title'):\n",
    "                sample_titles = line.strip().split('\\t')[1:]\n",
    "        \n",
    "        # Create a dictionary to store characteristics\n",
    "        characteristic_dict = {}\n",
    "        for i, line in enumerate(lines):\n",
    "            parts = line.strip().split('\\t')\n",
    "            characteristic_dict[i] = parts[1:]\n",
    "        \n",
    "        # Create DataFrame\n",
    "        characteristics_df = pd.DataFrame(characteristic_dict)\n",
    "        if geo_accessions:\n",
    "            characteristics_df.index = geo_accessions\n",
    "        return characteristics_df, sample_titles\n",
    "\n",
    "# Function to detect if the file contains gene expression data\n",
    "def has_gene_expression(file_path):\n",
    "    with gzip.open(file_path, 'rt') as f:\n",
    "        for line in f:\n",
    "            if line.startswith('!Series_platform_id'):\n",
    "                platform = line.strip().split(\"\\t\")[1]\n",
    "                # Check if platform is a gene expression platform (typically GPL*)\n",
    "                if platform.startswith('GPL'):\n",
    "                    # Gene expression platforms, not miRNA or methylation specific\n",
    "                    return True\n",
    "            if line.startswith('!Series_summary') or line.startswith('!Series_title'):\n",
    "                # Check summary for indications this is gene expression data\n",
    "                summary = line.strip()\n",
    "                if 'miRNA' in summary or 'methylation' in summary:\n",
    "                    return False\n",
    "            if line.startswith('!platform_technology'):\n",
    "                tech = line.strip().split(\"\\t\")[1].lower()\n",
    "                if 'expression' in tech and not ('mirna' in tech or 'methylation' in tech):\n",
    "                    return True\n",
    "                if 'mirna' in tech or 'methylation' in tech:\n",
    "                    return False\n",
    "            # Stop after a reasonable number of lines if we haven't found definitive info\n",
    "            if line.startswith('!series_matrix_table_begin'):\n",
    "                break\n",
    "    # Default to True if we couldn't determine otherwise\n",
    "    return True\n",
    "\n",
    "# Find and process the series matrix file\n",
    "matrix_file = os.path.join(in_cohort_dir, 'GSE42002_series_matrix.txt.gz')\n",
    "is_gene_available = has_gene_expression(matrix_file)\n",
    "\n",
    "# Extract sample characteristics\n",
    "clinical_data, sample_titles = extract_sample_characteristics(matrix_file)\n",
    "print(\"Sample Characteristics:\")\n",
    "for i in range(len(clinical_data.columns)):\n",
    "    print(f\"Row {i}: {clinical_data[i].unique()}\")\n",
    "\n",
    "# Based on the data exploration, determine trait, age, and gender availability\n",
    "# The data shows the following rows:\n",
    "# Row 0: genotype rs1360780 (AA/AG vs GG)\n",
    "# Row 1: condition (trauma vs control)\n",
    "# Row 2: tissue (whole blood)\n",
    "\n",
    "# There is no direct glucocorticoid sensitivity measure in this dataset\n",
    "trait_row = None  # No direct measure of glucocorticoid sensitivity\n",
    "age_row = None    # No age information\n",
    "gender_row = None # No gender information\n",
    "\n",
    "# Define conversion functions (though they won't be used in this case)\n",
    "def convert_trait(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert glucocorticoid sensitivity value to float.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # For GSE42002, we have no direct measure of glucocorticoid sensitivity\n",
    "    return None\n",
    "\n",
    "def convert_age(value: str) -> Optional[float]:\n",
    "    \"\"\"Convert age value to float.\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Try to convert to float\n",
    "    try:\n",
    "        # Remove any 'years' or other text\n",
    "        value = value.lower().replace('years', '').replace('year', '').strip()\n",
    "        value = value.split()[0]  # Take first token if there are multiple\n",
    "        return float(value)\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value: str) -> Optional[int]:\n",
    "    \"\"\"Convert gender value to binary (0 for female, 1 for male).\"\"\"\n",
    "    if pd.isna(value) or value is None:\n",
    "        return None\n",
    "    # Extract value after colon if present\n",
    "    if ':' in str(value):\n",
    "        value = value.split(':', 1)[1].strip()\n",
    "    \n",
    "    # Convert to lowercase for case-insensitive comparison\n",
    "    value = value.lower()\n",
    "    \n",
    "    if 'female' in value or 'f' == value or 'f ' in value:\n",
    "        return 0\n",
    "    elif 'male' in value or 'm' == value or 'm ' in value:\n",
    "        return 1\n",
    "    return None\n",
    "\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Save initial metadata\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Process clinical features if trait data is available\n",
    "# In this case, it's not available so we skip this step\n",
    "if is_trait_available:\n",
    "    def get_feature_data(df, row_idx, feature_name, convert_func):\n",
    "        \"\"\"Helper function to extract feature data and convert to appropriate type.\"\"\"\n",
    "        feature_data = df[row_idx].apply(convert_func).rename(feature_name)\n",
    "        return pd.DataFrame(feature_data)\n",
    "        \n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age if age_row is not None else None,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender if gender_row is not None else None\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical features\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Preview of selected clinical features:\", preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "else:\n",
    "    print(\"No trait data available for this cohort. Skipping clinical feature extraction.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b5c3c4d1",
   "metadata": {},
   "source": [
    "### Step 4: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "fd632757",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Get the file paths for the SOFT file and matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. First, let's examine the structure of the matrix file to understand its format\n",
    "import gzip\n",
    "\n",
    "# Peek at the first few lines of the file to understand its structure\n",
    "with gzip.open(matrix_file, 'rt') as file:\n",
    "    # Read first 100 lines to find the header structure\n",
    "    for i, line in enumerate(file):\n",
    "        if '!series_matrix_table_begin' in line:\n",
    "            print(f\"Found data marker at line {i}\")\n",
    "            # Read the next line which should be the header\n",
    "            header_line = next(file)\n",
    "            print(f\"Header line: {header_line.strip()}\")\n",
    "            # And the first data line\n",
    "            first_data_line = next(file)\n",
    "            print(f\"First data line: {first_data_line.strip()}\")\n",
    "            break\n",
    "        if i > 100:  # Limit search to first 100 lines\n",
    "            print(\"Matrix table marker not found in first 100 lines\")\n",
    "            break\n",
    "\n",
    "# 3. Now try to get the genetic data with better error handling\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(gene_data.index[:20])\n",
    "except KeyError as e:\n",
    "    print(f\"KeyError: {e}\")\n",
    "    \n",
    "    # Alternative approach: manually extract the data\n",
    "    print(\"\\nTrying alternative approach to read the gene data:\")\n",
    "    with gzip.open(matrix_file, 'rt') as file:\n",
    "        # Find the start of the data\n",
    "        for line in file:\n",
    "            if '!series_matrix_table_begin' in line:\n",
    "                break\n",
    "                \n",
    "        # Read the headers and data\n",
    "        import pandas as pd\n",
    "        df = pd.read_csv(file, sep='\\t', index_col=0)\n",
    "        print(f\"Column names: {df.columns[:5]}\")\n",
    "        print(f\"First 20 row IDs: {df.index[:20]}\")\n",
    "        gene_data = df\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "775a45d4",
   "metadata": {},
   "source": [
    "### Step 5: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0e4e8a5a",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Examining gene identifiers in the expression data\n",
    "# The identifiers start with \"ILMN_\" which indicates these are Illumina probe IDs\n",
    "# These are not human gene symbols but Illumina BeadChip probe identifiers\n",
    "# They need to be mapped to standard gene symbols for better interpretability and analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4a28698a",
   "metadata": {},
   "source": [
    "### Step 6: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "2cd96791",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
    "import gzip\n",
    "\n",
    "# Look at the first few lines of the SOFT file to understand its structure\n",
    "print(\"Examining SOFT file structure:\")\n",
    "try:\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        # Read first 20 lines to understand the file structure\n",
    "        for i, line in enumerate(file):\n",
    "            if i < 20:\n",
    "                print(f\"Line {i}: {line.strip()}\")\n",
    "            else:\n",
    "                break\n",
    "except Exception as e:\n",
    "    print(f\"Error reading SOFT file: {e}\")\n",
    "\n",
    "# 2. Now let's try a more robust approach to extract the gene annotation\n",
    "# Instead of using the library function which failed, we'll implement a custom approach\n",
    "try:\n",
    "    # First, look for the platform section which contains gene annotation\n",
    "    platform_data = []\n",
    "    with gzip.open(soft_file, 'rt') as file:\n",
    "        in_platform_section = False\n",
    "        for line in file:\n",
    "            if line.startswith('^PLATFORM'):\n",
    "                in_platform_section = True\n",
    "                continue\n",
    "            if in_platform_section and line.startswith('!platform_table_begin'):\n",
    "                # Next line should be the header\n",
    "                header = next(file).strip()\n",
    "                platform_data.append(header)\n",
    "                # Read until the end of the platform table\n",
    "                for table_line in file:\n",
    "                    if table_line.startswith('!platform_table_end'):\n",
    "                        break\n",
    "                    platform_data.append(table_line.strip())\n",
    "                break\n",
    "    \n",
    "    # If we found platform data, convert it to a DataFrame\n",
    "    if platform_data:\n",
    "        import pandas as pd\n",
    "        import io\n",
    "        platform_text = '\\n'.join(platform_data)\n",
    "        gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
    "                                      low_memory=False, on_bad_lines='skip')\n",
    "        print(\"\\nGene annotation preview:\")\n",
    "        print(preview_df(gene_annotation))\n",
    "    else:\n",
    "        print(\"Could not find platform table in SOFT file\")\n",
    "        \n",
    "        # Try an alternative approach - extract mapping from other sections\n",
    "        with gzip.open(soft_file, 'rt') as file:\n",
    "            for line in file:\n",
    "                if 'ANNOTATION information' in line or 'annotation information' in line:\n",
    "                    print(f\"Found annotation information: {line.strip()}\")\n",
    "                if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
    "                    print(f\"Platform title: {line.strip()}\")\n",
    "            \n",
    "except Exception as e:\n",
    "    print(f\"Error processing gene annotation: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4ffffad5",
   "metadata": {},
   "source": [
    "### Step 7: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "1bb96250",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Observe gene identifiers and gene annotation\n",
    "# The gene identifiers in the expression data are Illumina probe IDs (e.g., \"ILMN_1343291\")\n",
    "# These correspond to the \"ID\" column in the gene annotation dataframe\n",
    "# The gene symbols are stored in the \"Symbol\" column of the gene annotation dataframe\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting ID and Symbol columns\n",
    "# Create a mapping dataframe\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "\n",
    "# 3. Convert probe-level measurements to gene expression data\n",
    "# Apply the gene mapping to convert probe IDs to gene symbols\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Print information about the gene data\n",
    "print(f\"Original gene expression data shape: {gene_data.shape}\")\n",
    "if not gene_data.empty:\n",
    "    print(f\"First 10 gene symbols: {list(gene_data.index[:10])}\")\n",
    "    sample_count = gene_data.shape[1]\n",
    "    print(f\"Number of samples: {sample_count}\")\n",
    "else:\n",
    "    print(\"No genes mapped. Check if gene_annotation contains valid mapping information.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fe4945de",
   "metadata": {},
   "source": [
    "### Step 8: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "426a9b65",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Reload the gene expression data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# Get gene mapping dataframe and apply it\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
    "gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
    "\n",
    "# Normalize gene symbols in the obtained gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Check if trait data is available based on previous steps\n",
    "# From Step 3, we determined that trait data is not available\n",
    "is_trait_available = False\n",
    "\n",
    "# Since there's no clinical data available, we'll create a minimal clinical dataframe with just the sample IDs\n",
    "gene_samples = normalized_gene_data.columns\n",
    "sample_df = pd.DataFrame(index=['dummy_trait'], columns=gene_samples)\n",
    "sample_df.loc['dummy_trait'] = None  # Fill with NaN values\n",
    "clinical_data = sample_df\n",
    "\n",
    "print(f\"Clinical data shape: {clinical_data.shape}\")\n",
    "print(\"No actual clinical trait data available for this cohort.\")\n",
    "\n",
    "# 3. Link clinical and genetic data (though clinical data is just a placeholder)\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, first few columns):\")\n",
    "if linked_data.shape[1] >= 5:\n",
    "    print(linked_data.iloc[:5, :5])\n",
    "else:\n",
    "    print(linked_data.head())\n",
    "\n",
    "# Since there's no trait data, we cannot perform trait-based missing value handling\n",
    "# or judge if the trait is biased. We'll just create a properly formatted dataframe.\n",
    "cleaned_data = linked_data\n",
    "\n",
    "# Remove the dummy trait column if it exists\n",
    "if 'dummy_trait' in cleaned_data.columns:\n",
    "    cleaned_data = cleaned_data.drop(columns=['dummy_trait'])\n",
    "\n",
    "# 5. Validate and save cohort info\n",
    "note = \"This dataset contains gene expression data but does not contain the specific trait data for glucocorticoid sensitivity as required.\"\n",
    "is_gene_available = len(normalized_gene_data) > 0\n",
    "\n",
    "# Since there's no trait data, the dataset is not usable for associational studies\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=None,  # No trait to evaluate bias\n",
    "    df=cleaned_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# The dataset is not usable for our analyses since it lacks trait data\n",
    "print(\"Data was determined to be unusable due to missing trait information and was not saved.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a78b75c6",
   "metadata": {},
   "source": [
    "### Step 9: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "99107a73",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize gene symbols in the obtained gene expression data\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the previously saved clinical data\n",
    "clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)\n",
    "print(f\"Clinical data shape: {clinical_data.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(clinical_data.head())\n",
    "\n",
    "# 3. Link clinical and genetic data using proper sample IDs\n",
    "# First, transpose gene expression data to have samples as rows\n",
    "gene_data_t = normalized_gene_data.T\n",
    "\n",
    "# The clinical data should have samples as columns - verify sample IDs match\n",
    "gene_samples = set(gene_data_t.index)\n",
    "clinical_samples = set(clinical_data.columns)\n",
    "common_samples = gene_samples.intersection(clinical_samples)\n",
    "\n",
    "print(f\"Gene samples: {len(gene_samples)}\")\n",
    "print(f\"Clinical samples: {len(clinical_samples)}\")\n",
    "print(f\"Common samples: {len(common_samples)}\")\n",
    "\n",
    "# Use the geo_link_clinical_genetic_data function to properly link the data\n",
    "linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
    "if linked_data.shape[1] >= 5:\n",
    "    print(linked_data.iloc[:5, :5])\n",
    "else:\n",
    "    print(linked_data.head())\n",
    "\n",
    "# 4. Handle missing values\n",
    "print(\"\\nMissing values before handling:\")\n",
    "print(f\"  Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
    "gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
    "if gene_cols:\n",
    "    missing_genes_pct = linked_data[gene_cols].isna().mean()\n",
    "    genes_with_high_missing = sum(missing_genes_pct > 0.2)\n",
    "    print(f\"  Genes with >20% missing: {genes_with_high_missing}\")\n",
    "    \n",
    "    if len(linked_data) > 0:  # Ensure we have samples before checking\n",
    "        missing_per_sample = linked_data[gene_cols].isna().mean(axis=1)\n",
    "        samples_with_high_missing = sum(missing_per_sample > 0.05)\n",
    "        print(f\"  Samples with >5% missing genes: {samples_with_high_missing}\")\n",
    "\n",
    "# Handle missing values\n",
    "cleaned_data = handle_missing_values(linked_data, trait)\n",
    "print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
    "\n",
    "# 5. Evaluate bias in trait and demographic features\n",
    "trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
    "\n",
    "# 6. Final validation and save\n",
    "note = \"Dataset contains gene expression data from glucocorticoid sensitivity studies. \"\n",
    "if 'Age' in cleaned_data.columns:\n",
    "    note += \"Age data is available. \"\n",
    "if 'Gender' in cleaned_data.columns:\n",
    "    note += \"Gender data is available. \"\n",
    "\n",
    "is_gene_available = len(normalized_gene_data) > 0\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=is_gene_available, \n",
    "    is_trait_available=True, \n",
    "    is_biased=trait_biased, \n",
    "    df=cleaned_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 7. Save if usable\n",
    "if is_usable and len(cleaned_data) > 0:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    cleaned_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Data was determined to be unusable or empty and was not saved\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}