File size: 32,747 Bytes
d1894e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "63d9e05b",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Glucocorticoid_Sensitivity\"\n",
"cohort = \"GSE42002\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Glucocorticoid_Sensitivity\"\n",
"in_cohort_dir = \"../../input/GEO/Glucocorticoid_Sensitivity/GSE42002\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/GSE42002.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE42002.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE42002.csv\"\n",
"json_path = \"../../output/preprocess/Glucocorticoid_Sensitivity/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "7e0b9bfe",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f9d0eb83",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "7ead27eb",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "d8d983e6",
"metadata": {},
"outputs": [],
"source": [
"# Parse and analyze the dataset\n",
"\n",
"# 1. Determine if gene expression data is available\n",
"# Based on the background information, this dataset contains gene expression arrays\n",
"# measuring mRNA expression, which indicates gene expression data is available\n",
"is_gene_available = True\n",
"\n",
"# 2. Identify data availability for trait, age, and gender\n",
"\n",
"# 2.1 Trait data (Glucocorticoid_Sensitivity) can be derived from the condition (trauma/control)\n",
"# Looking at sample characteristics, we can see condition info at key 1\n",
"trait_row = 1\n",
"\n",
"# Convert trait data (trauma/control) to binary values (0/1)\n",
"def convert_trait(value):\n",
" if value is None:\n",
" return None\n",
" \n",
" # Extract value after colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to binary (trauma=1, control=0)\n",
" if 'trauma' in value.lower():\n",
" return 1\n",
" elif 'control' in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# 2.2 Age data is not available in the sample characteristics\n",
"age_row = None\n",
"\n",
"def convert_age(value):\n",
" # Function defined but not used since age data is unavailable\n",
" if value is None:\n",
" return None\n",
" \n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" try:\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"# 2.3 Gender data is not available in the sample characteristics\n",
"gender_row = None\n",
"\n",
"def convert_gender(value):\n",
" # Function defined but not used since gender data is unavailable\n",
" if value is None:\n",
" return None\n",
" \n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" value = value.lower()\n",
" if 'female' in value or 'f' == value:\n",
" return 0\n",
" elif 'male' in value or 'm' == value:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial metadata about dataset usability\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. If trait data is available, extract and save clinical features\n",
"if trait_row is not None:\n",
" # Parse the sample characteristics dictionary from the text representation\n",
" sample_chars_dict = {0: ['genotype: rs1360780 AA/AG', 'genotype: rs1360780 GG'], \n",
" 1: ['condition: trauma', 'condition: control'], \n",
" 2: ['tissue: whole blood']}\n",
" \n",
" # Create the clinical dataframe correctly for geo_select_clinical_features\n",
" clinical_data = pd.DataFrame()\n",
" for key, values in sample_chars_dict.items():\n",
" # Create a series for each row\n",
" clinical_data[key] = values\n",
" \n",
" # Create a clinical dataframe using the library function\n",
" clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the clinical dataframe\n",
" preview = preview_df(clinical_df)\n",
" print(\"Clinical Data Preview:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "68ba51b5",
"metadata": {},
"source": [
"### Step 3: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "63eb0768",
"metadata": {},
"outputs": [],
"source": [
"# Import necessary libraries\n",
"import pandas as pd\n",
"import os\n",
"import json\n",
"import gzip\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# Step 3: Analyze the dataset and extract clinical features\n",
"\n",
"# Function to extract sample characteristics from GEO series matrix file\n",
"def extract_sample_characteristics(file_path):\n",
" with gzip.open(file_path, 'rt') as f:\n",
" lines = []\n",
" in_characteristics = False\n",
" geo_accessions = []\n",
" sample_titles = []\n",
" \n",
" for line in f:\n",
" if line.startswith('!Sample_characteristics_ch1'):\n",
" in_characteristics = True\n",
" lines.append(line.strip())\n",
" elif in_characteristics and line.startswith('!Sample_'):\n",
" if not line.startswith('!Sample_characteristics_ch'):\n",
" in_characteristics = False\n",
" else:\n",
" lines.append(line.strip())\n",
" elif line.startswith('!Sample_geo_accession'):\n",
" geo_accessions = line.strip().split('\\t')[1:]\n",
" elif line.startswith('!Sample_title'):\n",
" sample_titles = line.strip().split('\\t')[1:]\n",
" \n",
" # Create a dictionary to store characteristics\n",
" characteristic_dict = {}\n",
" for i, line in enumerate(lines):\n",
" parts = line.strip().split('\\t')\n",
" characteristic_dict[i] = parts[1:]\n",
" \n",
" # Create DataFrame\n",
" characteristics_df = pd.DataFrame(characteristic_dict)\n",
" if geo_accessions:\n",
" characteristics_df.index = geo_accessions\n",
" return characteristics_df, sample_titles\n",
"\n",
"# Function to detect if the file contains gene expression data\n",
"def has_gene_expression(file_path):\n",
" with gzip.open(file_path, 'rt') as f:\n",
" for line in f:\n",
" if line.startswith('!Series_platform_id'):\n",
" platform = line.strip().split(\"\\t\")[1]\n",
" # Check if platform is a gene expression platform (typically GPL*)\n",
" if platform.startswith('GPL'):\n",
" # Gene expression platforms, not miRNA or methylation specific\n",
" return True\n",
" if line.startswith('!Series_summary') or line.startswith('!Series_title'):\n",
" # Check summary for indications this is gene expression data\n",
" summary = line.strip()\n",
" if 'miRNA' in summary or 'methylation' in summary:\n",
" return False\n",
" if line.startswith('!platform_technology'):\n",
" tech = line.strip().split(\"\\t\")[1].lower()\n",
" if 'expression' in tech and not ('mirna' in tech or 'methylation' in tech):\n",
" return True\n",
" if 'mirna' in tech or 'methylation' in tech:\n",
" return False\n",
" # Stop after a reasonable number of lines if we haven't found definitive info\n",
" if line.startswith('!series_matrix_table_begin'):\n",
" break\n",
" # Default to True if we couldn't determine otherwise\n",
" return True\n",
"\n",
"# Find and process the series matrix file\n",
"matrix_file = os.path.join(in_cohort_dir, 'GSE42002_series_matrix.txt.gz')\n",
"is_gene_available = has_gene_expression(matrix_file)\n",
"\n",
"# Extract sample characteristics\n",
"clinical_data, sample_titles = extract_sample_characteristics(matrix_file)\n",
"print(\"Sample Characteristics:\")\n",
"for i in range(len(clinical_data.columns)):\n",
" print(f\"Row {i}: {clinical_data[i].unique()}\")\n",
"\n",
"# Based on the data exploration, determine trait, age, and gender availability\n",
"# The data shows the following rows:\n",
"# Row 0: genotype rs1360780 (AA/AG vs GG)\n",
"# Row 1: condition (trauma vs control)\n",
"# Row 2: tissue (whole blood)\n",
"\n",
"# There is no direct glucocorticoid sensitivity measure in this dataset\n",
"trait_row = None # No direct measure of glucocorticoid sensitivity\n",
"age_row = None # No age information\n",
"gender_row = None # No gender information\n",
"\n",
"# Define conversion functions (though they won't be used in this case)\n",
"def convert_trait(value: str) -> Optional[float]:\n",
" \"\"\"Convert glucocorticoid sensitivity value to float.\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" # Extract value after colon if present\n",
" if ':' in str(value):\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # For GSE42002, we have no direct measure of glucocorticoid sensitivity\n",
" return None\n",
"\n",
"def convert_age(value: str) -> Optional[float]:\n",
" \"\"\"Convert age value to float.\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" # Extract value after colon if present\n",
" if ':' in str(value):\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Try to convert to float\n",
" try:\n",
" # Remove any 'years' or other text\n",
" value = value.lower().replace('years', '').replace('year', '').strip()\n",
" value = value.split()[0] # Take first token if there are multiple\n",
" return float(value)\n",
" except:\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> Optional[int]:\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male).\"\"\"\n",
" if pd.isna(value) or value is None:\n",
" return None\n",
" # Extract value after colon if present\n",
" if ':' in str(value):\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" # Convert to lowercase for case-insensitive comparison\n",
" value = value.lower()\n",
" \n",
" if 'female' in value or 'f' == value or 'f ' in value:\n",
" return 0\n",
" elif 'male' in value or 'm' == value or 'm ' in value:\n",
" return 1\n",
" return None\n",
"\n",
"# Check if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# Process clinical features if trait data is available\n",
"# In this case, it's not available so we skip this step\n",
"if is_trait_available:\n",
" def get_feature_data(df, row_idx, feature_name, convert_func):\n",
" \"\"\"Helper function to extract feature data and convert to appropriate type.\"\"\"\n",
" feature_data = df[row_idx].apply(convert_func).rename(feature_name)\n",
" return pd.DataFrame(feature_data)\n",
" \n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age if age_row is not None else None,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender if gender_row is not None else None\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\", preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"else:\n",
" print(\"No trait data available for this cohort. Skipping clinical feature extraction.\")\n"
]
},
{
"cell_type": "markdown",
"id": "b5c3c4d1",
"metadata": {},
"source": [
"### Step 4: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "fd632757",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "775a45d4",
"metadata": {},
"source": [
"### Step 5: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0e4e8a5a",
"metadata": {},
"outputs": [],
"source": [
"# Examining gene identifiers in the expression data\n",
"# The identifiers start with \"ILMN_\" which indicates these are Illumina probe IDs\n",
"# These are not human gene symbols but Illumina BeadChip probe identifiers\n",
"# They need to be mapped to standard gene symbols for better interpretability and analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "4a28698a",
"metadata": {},
"source": [
"### Step 6: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2cd96791",
"metadata": {},
"outputs": [],
"source": [
"# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
"import gzip\n",
"\n",
"# Look at the first few lines of the SOFT file to understand its structure\n",
"print(\"Examining SOFT file structure:\")\n",
"try:\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" # Read first 20 lines to understand the file structure\n",
" for i, line in enumerate(file):\n",
" if i < 20:\n",
" print(f\"Line {i}: {line.strip()}\")\n",
" else:\n",
" break\n",
"except Exception as e:\n",
" print(f\"Error reading SOFT file: {e}\")\n",
"\n",
"# 2. Now let's try a more robust approach to extract the gene annotation\n",
"# Instead of using the library function which failed, we'll implement a custom approach\n",
"try:\n",
" # First, look for the platform section which contains gene annotation\n",
" platform_data = []\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" in_platform_section = False\n",
" for line in file:\n",
" if line.startswith('^PLATFORM'):\n",
" in_platform_section = True\n",
" continue\n",
" if in_platform_section and line.startswith('!platform_table_begin'):\n",
" # Next line should be the header\n",
" header = next(file).strip()\n",
" platform_data.append(header)\n",
" # Read until the end of the platform table\n",
" for table_line in file:\n",
" if table_line.startswith('!platform_table_end'):\n",
" break\n",
" platform_data.append(table_line.strip())\n",
" break\n",
" \n",
" # If we found platform data, convert it to a DataFrame\n",
" if platform_data:\n",
" import pandas as pd\n",
" import io\n",
" platform_text = '\\n'.join(platform_data)\n",
" gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
" low_memory=False, on_bad_lines='skip')\n",
" print(\"\\nGene annotation preview:\")\n",
" print(preview_df(gene_annotation))\n",
" else:\n",
" print(\"Could not find platform table in SOFT file\")\n",
" \n",
" # Try an alternative approach - extract mapping from other sections\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" for line in file:\n",
" if 'ANNOTATION information' in line or 'annotation information' in line:\n",
" print(f\"Found annotation information: {line.strip()}\")\n",
" if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
" print(f\"Platform title: {line.strip()}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "4ffffad5",
"metadata": {},
"source": [
"### Step 7: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "1bb96250",
"metadata": {},
"outputs": [],
"source": [
"# 1. Observe gene identifiers and gene annotation\n",
"# The gene identifiers in the expression data are Illumina probe IDs (e.g., \"ILMN_1343291\")\n",
"# These correspond to the \"ID\" column in the gene annotation dataframe\n",
"# The gene symbols are stored in the \"Symbol\" column of the gene annotation dataframe\n",
"\n",
"# 2. Get gene mapping dataframe by extracting ID and Symbol columns\n",
"# Create a mapping dataframe\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"\n",
"# 3. Convert probe-level measurements to gene expression data\n",
"# Apply the gene mapping to convert probe IDs to gene symbols\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Print information about the gene data\n",
"print(f\"Original gene expression data shape: {gene_data.shape}\")\n",
"if not gene_data.empty:\n",
" print(f\"First 10 gene symbols: {list(gene_data.index[:10])}\")\n",
" sample_count = gene_data.shape[1]\n",
" print(f\"Number of samples: {sample_count}\")\n",
"else:\n",
" print(\"No genes mapped. Check if gene_annotation contains valid mapping information.\")\n"
]
},
{
"cell_type": "markdown",
"id": "fe4945de",
"metadata": {},
"source": [
"### Step 8: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "426a9b65",
"metadata": {},
"outputs": [],
"source": [
"# 1. Reload the gene expression data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# Get gene mapping dataframe and apply it\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"gene_data = apply_gene_mapping(gene_data, mapping_df)\n",
"\n",
"# Normalize gene symbols in the obtained gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Check if trait data is available based on previous steps\n",
"# From Step 3, we determined that trait data is not available\n",
"is_trait_available = False\n",
"\n",
"# Since there's no clinical data available, we'll create a minimal clinical dataframe with just the sample IDs\n",
"gene_samples = normalized_gene_data.columns\n",
"sample_df = pd.DataFrame(index=['dummy_trait'], columns=gene_samples)\n",
"sample_df.loc['dummy_trait'] = None # Fill with NaN values\n",
"clinical_data = sample_df\n",
"\n",
"print(f\"Clinical data shape: {clinical_data.shape}\")\n",
"print(\"No actual clinical trait data available for this cohort.\")\n",
"\n",
"# 3. Link clinical and genetic data (though clinical data is just a placeholder)\n",
"linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, first few columns):\")\n",
"if linked_data.shape[1] >= 5:\n",
" print(linked_data.iloc[:5, :5])\n",
"else:\n",
" print(linked_data.head())\n",
"\n",
"# Since there's no trait data, we cannot perform trait-based missing value handling\n",
"# or judge if the trait is biased. We'll just create a properly formatted dataframe.\n",
"cleaned_data = linked_data\n",
"\n",
"# Remove the dummy trait column if it exists\n",
"if 'dummy_trait' in cleaned_data.columns:\n",
" cleaned_data = cleaned_data.drop(columns=['dummy_trait'])\n",
"\n",
"# 5. Validate and save cohort info\n",
"note = \"This dataset contains gene expression data but does not contain the specific trait data for glucocorticoid sensitivity as required.\"\n",
"is_gene_available = len(normalized_gene_data) > 0\n",
"\n",
"# Since there's no trait data, the dataset is not usable for associational studies\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=None, # No trait to evaluate bias\n",
" df=cleaned_data,\n",
" note=note\n",
")\n",
"\n",
"# The dataset is not usable for our analyses since it lacks trait data\n",
"print(\"Data was determined to be unusable due to missing trait information and was not saved.\")\n"
]
},
{
"cell_type": "markdown",
"id": "a78b75c6",
"metadata": {},
"source": [
"### Step 9: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "99107a73",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize gene symbols in the obtained gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Load the previously saved clinical data\n",
"clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)\n",
"print(f\"Clinical data shape: {clinical_data.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(clinical_data.head())\n",
"\n",
"# 3. Link clinical and genetic data using proper sample IDs\n",
"# First, transpose gene expression data to have samples as rows\n",
"gene_data_t = normalized_gene_data.T\n",
"\n",
"# The clinical data should have samples as columns - verify sample IDs match\n",
"gene_samples = set(gene_data_t.index)\n",
"clinical_samples = set(clinical_data.columns)\n",
"common_samples = gene_samples.intersection(clinical_samples)\n",
"\n",
"print(f\"Gene samples: {len(gene_samples)}\")\n",
"print(f\"Clinical samples: {len(clinical_samples)}\")\n",
"print(f\"Common samples: {len(common_samples)}\")\n",
"\n",
"# Use the geo_link_clinical_genetic_data function to properly link the data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
"if linked_data.shape[1] >= 5:\n",
" print(linked_data.iloc[:5, :5])\n",
"else:\n",
" print(linked_data.head())\n",
"\n",
"# 4. Handle missing values\n",
"print(\"\\nMissing values before handling:\")\n",
"print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
"gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n",
"if gene_cols:\n",
" missing_genes_pct = linked_data[gene_cols].isna().mean()\n",
" genes_with_high_missing = sum(missing_genes_pct > 0.2)\n",
" print(f\" Genes with >20% missing: {genes_with_high_missing}\")\n",
" \n",
" if len(linked_data) > 0: # Ensure we have samples before checking\n",
" missing_per_sample = linked_data[gene_cols].isna().mean(axis=1)\n",
" samples_with_high_missing = sum(missing_per_sample > 0.05)\n",
" print(f\" Samples with >5% missing genes: {samples_with_high_missing}\")\n",
"\n",
"# Handle missing values\n",
"cleaned_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
"\n",
"# 5. Evaluate bias in trait and demographic features\n",
"trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
"\n",
"# 6. Final validation and save\n",
"note = \"Dataset contains gene expression data from glucocorticoid sensitivity studies. \"\n",
"if 'Age' in cleaned_data.columns:\n",
" note += \"Age data is available. \"\n",
"if 'Gender' in cleaned_data.columns:\n",
" note += \"Gender data is available. \"\n",
"\n",
"is_gene_available = len(normalized_gene_data) > 0\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=True, \n",
" is_biased=trait_biased, \n",
" df=cleaned_data,\n",
" note=note\n",
")\n",
"\n",
"# 7. Save if usable\n",
"if is_usable and len(cleaned_data) > 0:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" cleaned_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable or empty and was not saved\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|