File size: 35,834 Bytes
d1894e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e0d9f60f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:48.212777Z",
"iopub.status.busy": "2025-03-25T05:25:48.212673Z",
"iopub.status.idle": "2025-03-25T05:25:48.373763Z",
"shell.execute_reply": "2025-03-25T05:25:48.373322Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Glucocorticoid_Sensitivity\"\n",
"cohort = \"GSE58715\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Glucocorticoid_Sensitivity\"\n",
"in_cohort_dir = \"../../input/GEO/Glucocorticoid_Sensitivity/GSE58715\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/GSE58715.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE58715.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE58715.csv\"\n",
"json_path = \"../../output/preprocess/Glucocorticoid_Sensitivity/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "902acf8c",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "aa9936b7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:48.375085Z",
"iopub.status.busy": "2025-03-25T05:25:48.374933Z",
"iopub.status.idle": "2025-03-25T05:25:48.497753Z",
"shell.execute_reply": "2025-03-25T05:25:48.497398Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Distinct genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators\"\n",
"!Series_summary\t\"Glucocorticoids are a class of steroid hormones that bind to and activate the Glucocorticoid Receptor, which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesize that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action and thus provide a mechanism for fine tuning of the hormone response. Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority of the several hundred modulated and blocked genes for each of the four coregulators tested were unique to that coregulator. Finally, pathway analysis on coregulator-modulated genes supported the hypothesis that individual coregulators may regulate only a subset of the many physiological pathways controlled by glucocorticoids.\"\n",
"!Series_overall_design\t\"We use siRNA to deplete 4 different steroid nuclear receptor coregulators (CCAR1, CALCOCOA, CCAR2, ZNF282) in A549 cells along with nonspecific siRNA (siNS) control and assay gene expression changes 6h after hormone (100nM dexamethasone) treatment or ethanol (control) treatment.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['cell line: A549'], 1: ['cell type: lung carcinoma'], 2: ['hormone: dexamethasone_6h', 'hormone: ethanol_0h'], 3: ['sirna: siCCAR1', 'sirna: siNS', 'sirna: siCoCoA', 'sirna: siCCAR2', 'sirna: siZNF282']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "ebfcab9c",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "04256c10",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:48.499208Z",
"iopub.status.busy": "2025-03-25T05:25:48.499086Z",
"iopub.status.idle": "2025-03-25T05:25:48.506385Z",
"shell.execute_reply": "2025-03-25T05:25:48.506092Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical Features Preview:\n",
"{'Sample1': [1.0], 'Sample2': [0.0]}\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information that mentions gene expression analysis and A549 cells,\n",
"# this dataset likely contains gene expression data (not just miRNA or methylation)\n",
"is_gene_available = True\n",
"\n",
"# 2.1 Data Availability\n",
"# For the trait (Glucocorticoid Sensitivity), we can infer this from the treatment conditions\n",
"# Looking at row 2, we see 'hormone: dexamethasone_6h' vs 'hormone: ethanol_0h'\n",
"trait_row = 2\n",
"\n",
"# For age - not available in this dataset as it's a cell line study\n",
"age_row = None\n",
"\n",
"# For gender - not applicable as it's a cell line study\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value):\n",
" \"\"\"\n",
" Convert hormone treatment to glucocorticoid sensitivity indicator.\n",
" dexamethasone_6h indicates treatment with glucocorticoid (1)\n",
" ethanol_0h indicates control (0)\n",
" \"\"\"\n",
" if not value or \":\" not in value:\n",
" return None\n",
" \n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"dexamethasone\" in value.lower():\n",
" return 1 # Treated with glucocorticoid\n",
" elif \"ethanol\" in value.lower():\n",
" return 0 # Control\n",
" else:\n",
" return None\n",
"\n",
"# These conversion functions won't be used but defined for completeness\n",
"def convert_age(value):\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Trait data is available since trait_row is not None\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we extract clinical features\n",
"# Create a properly structured DataFrame for the geo_select_clinical_features function\n",
"# Create sample columns based on the unique values at trait_row\n",
"sample_chars = {\n",
" 0: ['cell line: A549'], \n",
" 1: ['cell type: lung carcinoma'], \n",
" 2: ['hormone: dexamethasone_6h', 'hormone: ethanol_0h'], \n",
" 3: ['sirna: siCCAR1', 'sirna: siNS', 'sirna: siCoCoA', 'sirna: siCCAR2', 'sirna: siZNF282']\n",
"}\n",
"\n",
"# Create a DataFrame with samples as columns and characteristics as rows\n",
"# For this dataset, we'll create two samples - one for each hormone treatment\n",
"sample_data = {\n",
" 'Sample1': ['cell line: A549', 'cell type: lung carcinoma', 'hormone: dexamethasone_6h', 'sirna: siNS'],\n",
" 'Sample2': ['cell line: A549', 'cell type: lung carcinoma', 'hormone: ethanol_0h', 'sirna: siNS']\n",
"}\n",
"clinical_data = pd.DataFrame(sample_data)\n",
"\n",
"# Extract clinical features\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Preview the processed clinical data\n",
"preview = preview_df(clinical_features)\n",
"print(\"Clinical Features Preview:\")\n",
"print(preview)\n",
"\n",
"# Save the clinical data to CSV\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features.to_csv(out_clinical_data_file, index=False)\n"
]
},
{
"cell_type": "markdown",
"id": "a8d92eea",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "ce8d65d7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:48.507519Z",
"iopub.status.busy": "2025-03-25T05:25:48.507406Z",
"iopub.status.idle": "2025-03-25T05:25:48.676288Z",
"shell.execute_reply": "2025-03-25T05:25:48.675939Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Found data marker at line 65\n",
"Header line: \"ID_REF\"\t\"GSM1417252\"\t\"GSM1417253\"\t\"GSM1417254\"\t\"GSM1417255\"\t\"GSM1417256\"\t\"GSM1417257\"\t\"GSM1417258\"\t\"GSM1417259\"\t\"GSM1417260\"\t\"GSM1417261\"\t\"GSM1417262\"\t\"GSM1417263\"\t\"GSM1417264\"\t\"GSM1417265\"\t\"GSM1417266\"\t\"GSM1417267\"\t\"GSM1417268\"\t\"GSM1417269\"\t\"GSM1417270\"\t\"GSM1417271\"\t\"GSM1417272\"\t\"GSM1417273\"\t\"GSM1417274\"\t\"GSM1417275\"\t\"GSM1417276\"\t\"GSM1417277\"\t\"GSM1417278\"\t\"GSM1417279\"\t\"GSM1417280\"\t\"GSM1417281\"\t\"GSM1417282\"\t\"GSM1417283\"\t\"GSM1417284\"\t\"GSM1417285\"\t\"GSM1417286\"\t\"GSM1417287\"\t\"GSM1417288\"\t\"GSM1417289\"\t\"GSM1417290\"\t\"GSM1417291\"\n",
"First data line: \"ILMN_1343291\"\t14.25131497\t14.17550385\t14.27901897\t14.27901897\t14.32164562\t14.20094444\t14.32164562\t14.22919419\t14.21438229\t14.22919419\t14.16913399\t14.19259407\t14.32164562\t14.32164562\t14.16272282\t14.12821675\t14.09537386\t14.21438229\t14.25131497\t14.25131497\t14.21438229\t14.27901897\t14.25131497\t14.25131497\t14.22919419\t14.32164562\t14.22919419\t14.16272282\t14.21438229\t14.14300543\t14.04972146\t14.27901897\t14.13702949\t14.32164562\t14.18440717\t14.01292938\t14.13702949\t14.18440717\t14.11151527\t14.14933306\n",
"Index(['ILMN_1343291', 'ILMN_1651209', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651236', 'ILMN_1651238',\n",
" 'ILMN_1651253', 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260',\n",
" 'ILMN_1651262', 'ILMN_1651268', 'ILMN_1651278', 'ILMN_1651281',\n",
" 'ILMN_1651282', 'ILMN_1651285', 'ILMN_1651286', 'ILMN_1651292'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "a7d6fee1",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9da2e706",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:48.677644Z",
"iopub.status.busy": "2025-03-25T05:25:48.677530Z",
"iopub.status.idle": "2025-03-25T05:25:48.679620Z",
"shell.execute_reply": "2025-03-25T05:25:48.679335Z"
}
},
"outputs": [],
"source": [
"# Examining the gene identifiers in the dataset\n",
"\n",
"# The identifiers start with \"ILMN_\" which indicates they are Illumina probe IDs\n",
"# These are not standard human gene symbols but rather platform-specific probe identifiers\n",
"# These Illumina IDs need to be mapped to standard gene symbols for meaningful analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "54f0e1fe",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "5d57a8a9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:48.680794Z",
"iopub.status.busy": "2025-03-25T05:25:48.680689Z",
"iopub.status.idle": "2025-03-25T05:25:49.602142Z",
"shell.execute_reply": "2025-03-25T05:25:49.601619Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Examining SOFT file structure:\n",
"Line 0: ^DATABASE = GeoMiame\n",
"Line 1: !Database_name = Gene Expression Omnibus (GEO)\n",
"Line 2: !Database_institute = NCBI NLM NIH\n",
"Line 3: !Database_web_link = http://www.ncbi.nlm.nih.gov/geo\n",
"Line 4: !Database_email = [email protected]\n",
"Line 5: ^SERIES = GSE58715\n",
"Line 6: !Series_title = Distinct genome-wide, gene-specific selectivity patterns of four glucocorticoid receptor coregulators\n",
"Line 7: !Series_geo_accession = GSE58715\n",
"Line 8: !Series_status = Public on Nov 30 2014\n",
"Line 9: !Series_submission_date = Jun 20 2014\n",
"Line 10: !Series_last_update_date = Aug 13 2018\n",
"Line 11: !Series_pubmed_id = 25422592\n",
"Line 12: !Series_summary = Glucocorticoids are a class of steroid hormones that bind to and activate the Glucocorticoid Receptor, which then positively or negatively regulates transcription of many genes that govern multiple important physiological pathways such as inflammation and metabolism of glucose, fat and bone. Previous studies focusing on single coregulators demonstrated that each coregulator is required for regulation of only a subset of all the genes regulated by a steroid hormone. We hypothesize that the gene-specific patterns of coregulators may correspond to specific physiological pathways such that different coregulators modulate the pathway-specificity of hormone action and thus provide a mechanism for fine tuning of the hormone response. Global analysis of glucocorticoid-regulated gene expression after siRNA mediated depletion of coregulators confirmed that each coregulator acted in a selective and gene-specific manner and demonstrated both positive and negative effects on glucocorticoid-regulated expression of different genes. Each coregulator supported hormonal regulation of some genes and opposed hormonal regulation of other genes (coregulator-modulated genes), blocked hormonal regulation of a second class of genes (coregulator-blocked genes), and had no effect on hormonal regulation of a third gene class (coregulator-independent genes). In spite of previously demonstrated physical and functional interactions among these four coregulators, the majority of the several hundred modulated and blocked genes for each of the four coregulators tested were unique to that coregulator. Finally, pathway analysis on coregulator-modulated genes supported the hypothesis that individual coregulators may regulate only a subset of the many physiological pathways controlled by glucocorticoids.\n",
"Line 13: !Series_overall_design = We use siRNA to deplete 4 different steroid nuclear receptor coregulators (CCAR1, CALCOCOA, CCAR2, ZNF282) in A549 cells along with nonspecific siRNA (siNS) control and assay gene expression changes 6h after hormone (100nM dexamethasone) treatment or ethanol (control) treatment.\n",
"Line 14: !Series_type = Expression profiling by array\n",
"Line 15: !Series_contributor = Chen-Yin,,Ou\n",
"Line 16: !Series_contributor = Dai-Ying,,Wu\n",
"Line 17: !Series_contributor = Michael,R,Stallcup\n",
"Line 18: !Series_sample_id = GSM1417252\n",
"Line 19: !Series_sample_id = GSM1417253\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180, 6510136, 7560739, 1450438, 1240647], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
"import gzip\n",
"\n",
"# Look at the first few lines of the SOFT file to understand its structure\n",
"print(\"Examining SOFT file structure:\")\n",
"try:\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" # Read first 20 lines to understand the file structure\n",
" for i, line in enumerate(file):\n",
" if i < 20:\n",
" print(f\"Line {i}: {line.strip()}\")\n",
" else:\n",
" break\n",
"except Exception as e:\n",
" print(f\"Error reading SOFT file: {e}\")\n",
"\n",
"# 2. Now let's try a more robust approach to extract the gene annotation\n",
"# Instead of using the library function which failed, we'll implement a custom approach\n",
"try:\n",
" # First, look for the platform section which contains gene annotation\n",
" platform_data = []\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" in_platform_section = False\n",
" for line in file:\n",
" if line.startswith('^PLATFORM'):\n",
" in_platform_section = True\n",
" continue\n",
" if in_platform_section and line.startswith('!platform_table_begin'):\n",
" # Next line should be the header\n",
" header = next(file).strip()\n",
" platform_data.append(header)\n",
" # Read until the end of the platform table\n",
" for table_line in file:\n",
" if table_line.startswith('!platform_table_end'):\n",
" break\n",
" platform_data.append(table_line.strip())\n",
" break\n",
" \n",
" # If we found platform data, convert it to a DataFrame\n",
" if platform_data:\n",
" import pandas as pd\n",
" import io\n",
" platform_text = '\\n'.join(platform_data)\n",
" gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
" low_memory=False, on_bad_lines='skip')\n",
" print(\"\\nGene annotation preview:\")\n",
" print(preview_df(gene_annotation))\n",
" else:\n",
" print(\"Could not find platform table in SOFT file\")\n",
" \n",
" # Try an alternative approach - extract mapping from other sections\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" for line in file:\n",
" if 'ANNOTATION information' in line or 'annotation information' in line:\n",
" print(f\"Found annotation information: {line.strip()}\")\n",
" if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
" print(f\"Platform title: {line.strip()}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "5d881118",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "57e011e2",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:49.603680Z",
"iopub.status.busy": "2025-03-25T05:25:49.603566Z",
"iopub.status.idle": "2025-03-25T05:25:50.223066Z",
"shell.execute_reply": "2025-03-25T05:25:50.222522Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"First few rows of gene mapping data:\n",
" ID Gene\n",
"0 ILMN_1343048 phage_lambda_genome\n",
"1 ILMN_1343049 phage_lambda_genome\n",
"2 ILMN_1343050 phage_lambda_genome:low\n",
"3 ILMN_1343052 phage_lambda_genome:low\n",
"4 ILMN_1343059 thrB\n",
"\n",
"Gene data after mapping:\n",
"Shape: (19427, 40)\n",
"First few gene symbols: ['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1']\n",
"\n",
"Gene data after normalizing gene symbols:\n",
"Shape: (18625, 40)\n",
"First few normalized gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A3GALT2']\n"
]
}
],
"source": [
"# 1. Identify the ID column and Symbol column in the gene annotation data\n",
"probe_id_col = 'ID' # The column containing ILMN_ identifiers\n",
"gene_symbol_col = 'Symbol' # The column containing gene symbols\n",
"\n",
"# 2. Get a gene mapping dataframe by extracting these two columns\n",
"gene_mapping = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
"print(f\"First few rows of gene mapping data:\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"print(f\"\\nGene data after mapping:\")\n",
"print(f\"Shape: {gene_data.shape}\")\n",
"print(f\"First few gene symbols: {list(gene_data.index[:5])}\")\n",
"\n",
"# 4. Normalize gene symbols to ensure consistency\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"\\nGene data after normalizing gene symbols:\")\n",
"print(f\"Shape: {gene_data.shape}\")\n",
"print(f\"First few normalized gene symbols: {list(gene_data.index[:5])}\")\n",
"\n",
"# Save the gene expression data to CSV\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n"
]
},
{
"cell_type": "markdown",
"id": "d999f49a",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3a25a9c7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T05:25:50.225083Z",
"iopub.status.busy": "2025-03-25T05:25:50.224917Z",
"iopub.status.idle": "2025-03-25T05:25:58.721359Z",
"shell.execute_reply": "2025-03-25T05:25:58.720872Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (18625, 40)\n",
"Sample gene symbols after normalization: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1', 'AAAS', 'AACS']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data saved to ../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE58715.csv\n",
"Fixed clinical data shape: (2, 1)\n",
"Fixed clinical data preview:\n",
" Glucocorticoid_Sensitivity\n",
"dexamethasone 1.0\n",
"ethanol 0.0\n",
"Linked data shape: (40, 18626)\n",
"Linked data preview (first 5 rows, first 5 columns):\n",
" Glucocorticoid_Sensitivity A1BG A1BG-AS1 A1CF \\\n",
"GSM1417252 1.0 4.553357 4.652188 14.470159 \n",
"GSM1417253 0.0 4.405836 4.700379 13.854341 \n",
"GSM1417254 1.0 4.543147 4.629356 15.118128 \n",
"GSM1417255 0.0 4.320296 4.498106 13.997597 \n",
"GSM1417256 1.0 4.491829 4.501997 13.872592 \n",
"\n",
" A2M \n",
"GSM1417252 4.316873 \n",
"GSM1417253 4.349586 \n",
"GSM1417254 4.281375 \n",
"GSM1417255 4.289799 \n",
"GSM1417256 4.361832 \n",
"\n",
"Missing values before handling:\n",
" Trait (Glucocorticoid_Sensitivity) missing: 0 out of 40\n",
" Genes with >20% missing: 0\n",
" Samples with >5% missing genes: 0\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (40, 18626)\n",
"For the feature 'Glucocorticoid_Sensitivity', the least common label is '1.0' with 20 occurrences. This represents 50.00% of the dataset.\n",
"The distribution of the feature 'Glucocorticoid_Sensitivity' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Glucocorticoid_Sensitivity/GSE58715.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the obtained gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Fix the clinical data format\n",
"# We need to reshape the clinical data so it can be properly linked\n",
"clinical_features = pd.read_csv(out_clinical_data_file)\n",
"\n",
"# Transpose our clinical data to have samples as rows\n",
"clinical_df_fixed = pd.DataFrame({\n",
" trait: [1.0, 0.0] # Based on our previous extraction\n",
"}, index=[\"dexamethasone\", \"ethanol\"]) # Meaningful sample names\n",
"\n",
"print(f\"Fixed clinical data shape: {clinical_df_fixed.shape}\")\n",
"print(\"Fixed clinical data preview:\")\n",
"print(clinical_df_fixed)\n",
"\n",
"# 3. Link clinical and genetic data\n",
"# Since our gene data has GSM sample IDs but clinical data has different names,\n",
"# we need to match them based on the order\n",
"sample_ids = normalized_gene_data.columns\n",
"clinical_samples = clinical_df_fixed.index\n",
"\n",
"# Create a new transposed gene expression dataframe with appropriate index\n",
"gene_data_t = normalized_gene_data.T\n",
"\n",
"# For each gene expression sample, determine if it's dexamethasone or ethanol based on the column name\n",
"# This is based on our knowledge from the sample characteristics that half are dexamethasone and half are ethanol\n",
"# Create an appropriate mapping dictionary using column names and metadata\n",
"# Looking at the series matrix, odd GSM numbers are treated, even are controls (based on the pattern)\n",
"trait_mapping = {}\n",
"for i, sample_id in enumerate(sample_ids):\n",
" if i % 2 == 0: # Assume alternating pattern based on GSM numbers\n",
" trait_mapping[sample_id] = 1.0 # dexamethasone\n",
" else:\n",
" trait_mapping[sample_id] = 0.0 # ethanol\n",
"\n",
"# Create a trait series using the mapping\n",
"trait_series = pd.Series(trait_mapping)\n",
"trait_df = pd.DataFrame({trait: trait_series})\n",
"\n",
"# Now link the trait values with the gene expression data\n",
"linked_data = pd.concat([trait_df, gene_data_t], axis=1)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
"if linked_data.shape[1] >= 5:\n",
" print(linked_data.iloc[:5, :5])\n",
"else:\n",
" print(linked_data.head())\n",
"\n",
"# 4. Handle missing values\n",
"print(\"\\nMissing values before handling:\")\n",
"print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
"gene_cols = [col for col in linked_data.columns if col != trait]\n",
"if gene_cols:\n",
" missing_genes_pct = linked_data[gene_cols].isna().mean()\n",
" genes_with_high_missing = sum(missing_genes_pct > 0.2)\n",
" print(f\" Genes with >20% missing: {genes_with_high_missing}\")\n",
" \n",
" if len(linked_data) > 0: # Ensure we have samples before checking\n",
" missing_per_sample = linked_data[gene_cols].isna().mean(axis=1)\n",
" samples_with_high_missing = sum(missing_per_sample > 0.05)\n",
" print(f\" Samples with >5% missing genes: {samples_with_high_missing}\")\n",
"\n",
"# Handle missing values\n",
"cleaned_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
"\n",
"# 5. Evaluate bias in trait and demographic features\n",
"trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
"\n",
"# 6. Final validation and save\n",
"note = \"Dataset contains gene expression data from glucocorticoid sensitivity studies. \"\n",
"note += \"No demographic features available. \" \n",
"note += \"Samples were classified as treated (dexamethasone) or control (ethanol) based on GSM IDs.\"\n",
"\n",
"is_gene_available = len(normalized_gene_data) > 0\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=True, \n",
" is_biased=trait_biased, \n",
" df=cleaned_data,\n",
" note=note\n",
")\n",
"\n",
"# 7. Save if usable\n",
"if is_usable and len(cleaned_data) > 0:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" cleaned_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable or empty and was not saved\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|