File size: 22,997 Bytes
d1894e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 |
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"id": "c7ecee26",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Glucocorticoid_Sensitivity\"\n",
"cohort = \"GSE65645\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Glucocorticoid_Sensitivity\"\n",
"in_cohort_dir = \"../../input/GEO/Glucocorticoid_Sensitivity/GSE65645\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/GSE65645.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE65645.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE65645.csv\"\n",
"json_path = \"../../output/preprocess/Glucocorticoid_Sensitivity/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "0e81885d",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "26a95b92",
"metadata": {},
"outputs": [],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "931ea8be",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "7e51426c",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import numpy as np\n",
"import json\n",
"from typing import Optional, Callable, Dict, Any, List\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Looking at the background info, this is an Agilent microarray with lncRNA expression data\n",
"# It's likely to contain gene expression data, though focused on lncRNAs\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"\n",
"# For trait (Glucocorticoid_Sensitivity)\n",
"# Looking at the background info, this study involves responsiveness to prednisolone/prednisone (glucocorticoids)\n",
"# From the sample characteristics dictionary, we can use the 'translocation' information as it relates to \n",
"# glucocorticoid sensitivity in B-ALL\n",
"trait_row = 1 # corresponds to the translocation types\n",
"\n",
"# For age and gender\n",
"# These are not available in the sample characteristics dictionary\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"def convert_trait(value: str) -> Optional[int]:\n",
" \"\"\"\n",
" Convert translocation types to binary for glucocorticoid sensitivity.\n",
" \n",
" Based on the background information, MLL translocations are associated with \n",
" poorer response to glucocorticoids, so we'll use this as the binary indicator.\n",
" 0 = TEL_AML1 or E2A_PBX1 (better glucocorticoid response)\n",
" 1 = MLL (worse glucocorticoid response)\n",
" \"\"\"\n",
" if not value or ':' not in value:\n",
" return None\n",
" \n",
" translocation = value.split(':', 1)[1].strip()\n",
" \n",
" if translocation == 'MLL':\n",
" return 1 # Less sensitive to glucocorticoids\n",
" elif translocation in ['TEL_AML1', 'E2A_PBX1']:\n",
" return 0 # More sensitive to glucocorticoids\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value: str) -> Optional[float]:\n",
" \"\"\"\n",
" Placeholder function for age conversion (not used as age data is not available).\n",
" \"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> Optional[int]:\n",
" \"\"\"\n",
" Placeholder function for gender conversion (not used as gender data is not available).\n",
" \"\"\"\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # Assuming the clinical data is stored somewhere and accessible\n",
" # We'll create a properly formatted DataFrame based on the sample characteristics\n",
" \n",
" # First, create columns for samples\n",
" sample_chars = {0: ['sample_type: bone marrow'], 1: ['translocation: TEL_AML1', 'translocation: E2A_PBX1', 'translocation: MLL']}\n",
" \n",
" # The format expected by geo_select_clinical_features seems to be:\n",
" # - Rows represent different characteristics (like sample_type, translocation)\n",
" # - Columns represent different samples\n",
" \n",
" # Create a DataFrame with sample names as columns\n",
" num_samples = max(len(values) for values in sample_chars.values())\n",
" sample_columns = [f'Sample_{i+1}' for i in range(num_samples)]\n",
" \n",
" clinical_data = pd.DataFrame(index=sample_chars.keys(), columns=sample_columns)\n",
" \n",
" # Fill in the data\n",
" for row_idx, values in sample_chars.items():\n",
" for sample_idx, value in enumerate(values):\n",
" if sample_idx < len(sample_columns):\n",
" clinical_data.iloc[row_idx, sample_idx] = value\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the DataFrame\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "6c58f751",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "073b89df",
"metadata": {},
"outputs": [],
"source": [
"# 1. Get the file paths for the SOFT file and matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. First, let's examine the structure of the matrix file to understand its format\n",
"import gzip\n",
"\n",
"# Peek at the first few lines of the file to understand its structure\n",
"with gzip.open(matrix_file, 'rt') as file:\n",
" # Read first 100 lines to find the header structure\n",
" for i, line in enumerate(file):\n",
" if '!series_matrix_table_begin' in line:\n",
" print(f\"Found data marker at line {i}\")\n",
" # Read the next line which should be the header\n",
" header_line = next(file)\n",
" print(f\"Header line: {header_line.strip()}\")\n",
" # And the first data line\n",
" first_data_line = next(file)\n",
" print(f\"First data line: {first_data_line.strip()}\")\n",
" break\n",
" if i > 100: # Limit search to first 100 lines\n",
" print(\"Matrix table marker not found in first 100 lines\")\n",
" break\n",
"\n",
"# 3. Now try to get the genetic data with better error handling\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(gene_data.index[:20])\n",
"except KeyError as e:\n",
" print(f\"KeyError: {e}\")\n",
" \n",
" # Alternative approach: manually extract the data\n",
" print(\"\\nTrying alternative approach to read the gene data:\")\n",
" with gzip.open(matrix_file, 'rt') as file:\n",
" # Find the start of the data\n",
" for line in file:\n",
" if '!series_matrix_table_begin' in line:\n",
" break\n",
" \n",
" # Read the headers and data\n",
" import pandas as pd\n",
" df = pd.read_csv(file, sep='\\t', index_col=0)\n",
" print(f\"Column names: {df.columns[:5]}\")\n",
" print(f\"First 20 row IDs: {df.index[:20]}\")\n",
" gene_data = df\n"
]
},
{
"cell_type": "markdown",
"id": "2f35137e",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a69a6e93",
"metadata": {},
"outputs": [],
"source": [
"# Based on the gene identifiers shown in the sample data, these appear to be Agilent microarray\n",
"# probe IDs (starting with A_19_P) mixed with control probes. These are not standard human\n",
"# gene symbols and will require mapping to convert to gene symbols.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "91f53c57",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bc1a9b22",
"metadata": {},
"outputs": [],
"source": [
"# 1. Let's first examine the structure of the SOFT file before trying to parse it\n",
"import gzip\n",
"\n",
"# Look at the first few lines of the SOFT file to understand its structure\n",
"print(\"Examining SOFT file structure:\")\n",
"try:\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" # Read first 20 lines to understand the file structure\n",
" for i, line in enumerate(file):\n",
" if i < 20:\n",
" print(f\"Line {i}: {line.strip()}\")\n",
" else:\n",
" break\n",
"except Exception as e:\n",
" print(f\"Error reading SOFT file: {e}\")\n",
"\n",
"# 2. Now let's try a more robust approach to extract the gene annotation\n",
"# Instead of using the library function which failed, we'll implement a custom approach\n",
"try:\n",
" # First, look for the platform section which contains gene annotation\n",
" platform_data = []\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" in_platform_section = False\n",
" for line in file:\n",
" if line.startswith('^PLATFORM'):\n",
" in_platform_section = True\n",
" continue\n",
" if in_platform_section and line.startswith('!platform_table_begin'):\n",
" # Next line should be the header\n",
" header = next(file).strip()\n",
" platform_data.append(header)\n",
" # Read until the end of the platform table\n",
" for table_line in file:\n",
" if table_line.startswith('!platform_table_end'):\n",
" break\n",
" platform_data.append(table_line.strip())\n",
" break\n",
" \n",
" # If we found platform data, convert it to a DataFrame\n",
" if platform_data:\n",
" import pandas as pd\n",
" import io\n",
" platform_text = '\\n'.join(platform_data)\n",
" gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n",
" low_memory=False, on_bad_lines='skip')\n",
" print(\"\\nGene annotation preview:\")\n",
" print(preview_df(gene_annotation))\n",
" else:\n",
" print(\"Could not find platform table in SOFT file\")\n",
" \n",
" # Try an alternative approach - extract mapping from other sections\n",
" with gzip.open(soft_file, 'rt') as file:\n",
" for line in file:\n",
" if 'ANNOTATION information' in line or 'annotation information' in line:\n",
" print(f\"Found annotation information: {line.strip()}\")\n",
" if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n",
" print(f\"Platform title: {line.strip()}\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error processing gene annotation: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "8feaf095",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "277d2520",
"metadata": {},
"outputs": [],
"source": [
"# 1. Determine which keys to use for mapping\n",
"# From the outputs, we can see:\n",
"# - The gene expression data uses 'ID' as identifiers\n",
"# - In the annotation dataframe, 'ID' corresponds to probe IDs and 'GENE_SYMBOL' contains gene symbols\n",
"\n",
"# 2. Get gene mapping dataframe\n",
"gene_mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression\n",
"# First, let's check if there are any rows in the mapping dataframe\n",
"print(f\"Number of rows in mapping dataframe: {len(gene_mapping_df)}\")\n",
"print(f\"Sample of gene mapping data (first 5 rows):\")\n",
"print(gene_mapping_df.head())\n",
"\n",
"# Apply the mapping\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping_df)\n",
"\n",
"# Check the resulting gene expression data\n",
"print(f\"\\nNumber of genes after mapping: {len(gene_data)}\")\n",
"print(f\"First few genes:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Preview the gene expression data\n",
"print(\"\\nPreview of gene expression data:\")\n",
"gene_data_preview = preview_df(gene_data)\n",
"print(gene_data_preview)\n",
"\n",
"# Save the gene expression data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "f90226d2",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "de9c24ce",
"metadata": {},
"outputs": [],
"source": [
"# 1. Normalize gene symbols in the obtained gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Re-load the clinical data from the SOFT file to extract sample characteristics\n",
"print(\"\\nExtracting clinical data from SOFT file...\")\n",
"sample_info = {}\n",
"\n",
"# Read the SOFT file to extract sample information\n",
"with gzip.open(soft_file, 'rt') as f:\n",
" current_sample = None\n",
" for line in f:\n",
" # Detect sample sections\n",
" if line.startswith('!Sample_geo_accession'):\n",
" sample_id = line.split('=')[1].strip()\n",
" current_sample = sample_id\n",
" sample_info[current_sample] = {}\n",
" \n",
" # Extract translocation information\n",
" if current_sample and 'translocation' in line.lower():\n",
" if 'mll' in line.lower() or 'mil' in line.lower():\n",
" sample_info[current_sample]['translocation'] = 'MLL'\n",
" elif 'tel' in line.lower() and 'aml' in line.lower():\n",
" sample_info[current_sample]['translocation'] = 'TEL_AML1'\n",
" elif 'e2a' in line.lower() and 'pbx' in line.lower():\n",
" sample_info[current_sample]['translocation'] = 'E2A_PBX1'\n",
"\n",
"print(f\"Found information for {len(sample_info)} samples\")\n",
"\n",
"# Map samples to trait values based on translocation type\n",
"clinical_data = {}\n",
"genetic_sample_ids = normalized_gene_data.columns.tolist()\n",
"\n",
"for sample_id in genetic_sample_ids:\n",
" if sample_id in sample_info and 'translocation' in sample_info[sample_id]:\n",
" translocation = sample_info[sample_id]['translocation']\n",
" if translocation == 'MLL':\n",
" clinical_data[sample_id] = 1 # Less sensitive to glucocorticoids\n",
" elif translocation in ['TEL_AML1', 'E2A_PBX1']:\n",
" clinical_data[sample_id] = 0 # More sensitive to glucocorticoids\n",
" else:\n",
" clinical_data[sample_id] = None\n",
"\n",
"# Create clinical dataframe\n",
"clinical_df = pd.DataFrame({trait: clinical_data}, index=genetic_sample_ids)\n",
"print(f\"Clinical data shape: {clinical_df.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(clinical_df.head())\n",
"print(f\"Samples with valid trait values: {clinical_df[trait].notna().sum()}\")\n",
"\n",
"# Save updated clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Updated clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# 3. Link clinical and genetic data\n",
"linked_data = pd.concat([clinical_df, normalized_gene_data.T], axis=1)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"print(\"Linked data preview (first 5 rows, first 5 columns):\")\n",
"if linked_data.shape[1] >= 5:\n",
" print(linked_data.iloc[:5, :5])\n",
"else:\n",
" print(linked_data.head())\n",
"\n",
"# 4. Handle missing values\n",
"print(\"\\nMissing values before handling:\")\n",
"print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n",
"gene_cols = [col for col in linked_data.columns if col != trait]\n",
"if gene_cols:\n",
" missing_genes_pct = linked_data[gene_cols].isna().mean()\n",
" genes_with_high_missing = sum(missing_genes_pct > 0.2)\n",
" print(f\" Genes with >20% missing: {genes_with_high_missing}\")\n",
" \n",
" if len(linked_data) > 0: # Ensure we have samples before checking\n",
" missing_per_sample = linked_data[gene_cols].isna().mean(axis=1)\n",
" samples_with_high_missing = sum(missing_per_sample > 0.05)\n",
" print(f\" Samples with >5% missing genes: {samples_with_high_missing}\")\n",
"\n",
"# Handle missing values\n",
"cleaned_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n",
"\n",
"# 5. Evaluate bias in trait and demographic features\n",
"if len(cleaned_data) > 0:\n",
" trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n",
"else:\n",
" trait_biased = True\n",
" print(\"Dataset is empty after handling missing values.\")\n",
"\n",
"# 6. Final validation and save\n",
"note = \"Dataset contains gene expression data from B-ALL patients with different translocations. \"\n",
"note += \"Translocation type is used as a proxy for glucocorticoid sensitivity: MLL translocations have poorer \"\n",
"note += \"response to glucocorticoids compared to TEL_AML1 or E2A_PBX1 translocations. No demographic features available.\"\n",
"\n",
"is_gene_available = len(normalized_gene_data) > 0\n",
"is_trait_available = len(clinical_df) > 0 and clinical_df[trait].notna().sum() > 0\n",
"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available, \n",
" is_biased=trait_biased, \n",
" df=cleaned_data,\n",
" note=note\n",
")\n",
"\n",
"# 7. Save if usable\n",
"if is_usable and len(cleaned_data) > 0:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" cleaned_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Data was determined to be unusable or empty and was not saved\")"
]
}
],
"metadata": {},
"nbformat": 4,
"nbformat_minor": 5
}
|