File size: 20,557 Bytes
d1894e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "44e9509b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:26:30.330303Z",
     "iopub.status.busy": "2025-03-25T05:26:30.330065Z",
     "iopub.status.idle": "2025-03-25T05:26:30.501754Z",
     "shell.execute_reply": "2025-03-25T05:26:30.501392Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Glucocorticoid_Sensitivity\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Glucocorticoid_Sensitivity/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bf691ab9",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "374e6cd6",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:26:30.503052Z",
     "iopub.status.busy": "2025-03-25T05:26:30.502888Z",
     "iopub.status.idle": "2025-03-25T05:26:30.731201Z",
     "shell.execute_reply": "2025-03-25T05:26:30.730851Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available TCGA subdirectories: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
      "Selected Adrenocortical Cancer (ACC) as most relevant to glucocorticoid biology\n",
      "Selected directory: TCGA_Adrenocortical_Cancer_(ACC)\n",
      "Clinical file: TCGA.ACC.sampleMap_ACC_clinicalMatrix\n",
      "Genetic file: TCGA.ACC.sampleMap_HiSeqV2_PANCAN.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Clinical data columns:\n",
      "['_INTEGRATION', '_PATIENT', '_cohort', '_primary_disease', '_primary_site', 'additional_pharmaceutical_therapy', 'additional_radiation_therapy', 'age_at_initial_pathologic_diagnosis', 'atypical_mitotic_figures', 'bcr_followup_barcode', 'bcr_patient_barcode', 'bcr_sample_barcode', 'clinical_M', 'ct_scan_findings', 'cytoplasm_presence_less_than_equal_25_percent', 'days_to_birth', 'days_to_collection', 'days_to_death', 'days_to_initial_pathologic_diagnosis', 'days_to_last_followup', 'days_to_new_tumor_event_additional_surgery_procedure', 'days_to_new_tumor_event_after_initial_treatment', 'diffuse_architecture', 'distant_metastasis_anatomic_site', 'excess_adrenal_hormone_diagnosis_method_type', 'excess_adrenal_hormone_history_type', 'form_completion_date', 'gender', 'germline_testing_performed', 'histologic_disease_progression_present_indicator', 'histological_type', 'history_of_neoadjuvant_treatment', 'icd_10', 'icd_o_3_histology', 'icd_o_3_site', 'informed_consent_verified', 'initial_weight', 'invasion_of_tumor_capsule', 'is_ffpe', 'laterality', 'lost_follow_up', 'lymph_node_examined_count', 'metastatic_neoplasm_confirmed_diagnosis_method_name', 'metastatic_neoplasm_confirmed_diagnosis_method_text', 'mitoses_count', 'mitotane_therapy', 'mitotane_therapy_adjuvant_setting', 'mitotane_therapy_for_macroscopic_residual_disease', 'mitotic_rate', 'necrosis', 'new_neoplasm_confirmed_diagnosis_method_name', 'new_neoplasm_event_occurrence_anatomic_site', 'new_neoplasm_event_type', 'new_neoplasm_occurrence_anatomic_site_text', 'new_tumor_event_additional_surgery_procedure', 'new_tumor_event_after_initial_treatment', 'nuclear_grade_III_IV', 'number_of_lymphnodes_positive_by_he', 'oct_embedded', 'other_dx', 'pathologic_N', 'pathologic_T', 'pathologic_stage', 'pathology_report_file_name', 'patient_id', 'person_neoplasm_cancer_status', 'post_surgical_procedure_assessment_thyroid_gland_carcinoma_stats', 'postoperative_rx_tx', 'primary_lymph_node_presentation_assessment', 'primary_therapy_outcome_success', 'radiation_therapy', 'residual_tumor', 'ret', 'sample_type', 'sample_type_id', 'sinusoid_invasion', 'therapeutic_mitotane_levels_achieved', 'therapeutic_mitotane_lvl_macroscopic_residual', 'therapeutic_mitotane_lvl_progression', 'therapeutic_mitotane_lvl_recurrence', 'tissue_prospective_collection_indicator', 'tissue_retrospective_collection_indicator', 'tissue_source_site', 'tumor_tissue_site', 'vial_number', 'vital_status', 'weiss_score', 'weiss_venous_invasion', 'year_of_initial_pathologic_diagnosis', '_GENOMIC_ID_TCGA_ACC_mutation_curated_bcm_gene', '_GENOMIC_ID_TCGA_ACC_exp_HiSeqV2_percentile', '_GENOMIC_ID_data/public/TCGA/ACC/miRNA_HiSeq_gene', '_GENOMIC_ID_TCGA_ACC_miRNA_HiSeq', '_GENOMIC_ID_TCGA_ACC_RPPA', '_GENOMIC_ID_TCGA_ACC_hMethyl450', '_GENOMIC_ID_TCGA_ACC_exp_HiSeqV2_exon', '_GENOMIC_ID_TCGA_ACC_exp_HiSeqV2', '_GENOMIC_ID_TCGA_ACC_gistic2thd', '_GENOMIC_ID_TCGA_ACC_PDMRNAseq', '_GENOMIC_ID_TCGA_ACC_PDMRNAseqCNV', '_GENOMIC_ID_TCGA_ACC_exp_HiSeqV2_PANCAN', '_GENOMIC_ID_TCGA_ACC_gistic2', '_GENOMIC_ID_TCGA_ACC_mutation_bcm_gene', '_GENOMIC_ID_TCGA_ACC_mutation_curated_broad_gene']\n",
      "\n",
      "Clinical data shape: (92, 104)\n",
      "Genetic data shape: (20530, 79)\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "import pandas as pd\n",
    "\n",
    "# 1. List all subdirectories in the TCGA root directory\n",
    "subdirectories = os.listdir(tcga_root_dir)\n",
    "print(f\"Available TCGA subdirectories: {subdirectories}\")\n",
    "\n",
    "# The target trait is Glucocorticoid_Sensitivity\n",
    "# Define key terms relevant to Glucocorticoid Sensitivity\n",
    "# Glucocorticoids are steroid hormones involved in immune regulation, stress response, and metabolism\n",
    "key_terms = [\"adrenal\", \"steroid\", \"cortisol\", \"immune\", \"hormone\", \"glucocorticoid\"]\n",
    "\n",
    "# Initialize variables for best match\n",
    "best_match = None\n",
    "best_match_score = 0\n",
    "min_threshold = 1  # Require at least 1 matching term\n",
    "\n",
    "# Convert trait to lowercase for case-insensitive matching\n",
    "target_trait = trait.lower().replace(\"_\", \" \")  # \"glucocorticoid sensitivity\"\n",
    "\n",
    "# Search for relevant directories\n",
    "for subdir in subdirectories:\n",
    "    if not os.path.isdir(os.path.join(tcga_root_dir, subdir)) or subdir.startswith('.'):\n",
    "        continue\n",
    "        \n",
    "    subdir_lower = subdir.lower()\n",
    "    \n",
    "    # Check for exact matches\n",
    "    if target_trait in subdir_lower:\n",
    "        best_match = subdir\n",
    "        print(f\"Found exact match: {subdir}\")\n",
    "        break\n",
    "    \n",
    "    # Calculate score based on key terms\n",
    "    score = 0\n",
    "    for term in key_terms:\n",
    "        if term in subdir_lower:\n",
    "            score += 1\n",
    "    \n",
    "    # Update best match if score is higher than current best\n",
    "    if score > best_match_score and score >= min_threshold:\n",
    "        best_match_score = score\n",
    "        best_match = subdir\n",
    "        print(f\"Found potential match: {subdir} (score: {score})\")\n",
    "\n",
    "# If no exact matches are found, prefer adrenocortical cancer if available\n",
    "if not best_match and \"TCGA_Adrenocortical_Cancer_(ACC)\" in subdirectories:\n",
    "    best_match = \"TCGA_Adrenocortical_Cancer_(ACC)\"\n",
    "    print(f\"Selected Adrenocortical Cancer (ACC) as most relevant to glucocorticoid biology\")\n",
    "\n",
    "# Handle the case where a match is found\n",
    "if best_match:\n",
    "    print(f\"Selected directory: {best_match}\")\n",
    "    \n",
    "    # 2. Get the clinical and genetic data file paths\n",
    "    cohort_dir = os.path.join(tcga_root_dir, best_match)\n",
    "    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    \n",
    "    print(f\"Clinical file: {os.path.basename(clinical_file_path)}\")\n",
    "    print(f\"Genetic file: {os.path.basename(genetic_file_path)}\")\n",
    "    \n",
    "    # 3. Load the data files\n",
    "    clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "    genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n",
    "    \n",
    "    # 4. Print clinical data columns for inspection\n",
    "    print(\"\\nClinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n",
    "    \n",
    "    # Print basic information about the datasets\n",
    "    print(f\"\\nClinical data shape: {clinical_df.shape}\")\n",
    "    print(f\"Genetic data shape: {genetic_df.shape}\")\n",
    "    \n",
    "    # Check if we have both gene and trait data\n",
    "    is_gene_available = genetic_df.shape[0] > 0\n",
    "    is_trait_available = clinical_df.shape[0] > 0\n",
    "    \n",
    "else:\n",
    "    print(f\"No suitable directory found for {trait}.\")\n",
    "    is_gene_available = False\n",
    "    is_trait_available = False\n",
    "\n",
    "# Record the data availability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=\"TCGA\",\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Exit if no suitable directory was found\n",
    "if not best_match:\n",
    "    print(\"Skipping this trait as no suitable data was found in TCGA.\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "3e7fe6f7",
   "metadata": {},
   "source": [
    "### Step 2: Find Candidate Demographic Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "3005ad63",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:26:30.732612Z",
     "iopub.status.busy": "2025-03-25T05:26:30.732485Z",
     "iopub.status.idle": "2025-03-25T05:26:30.739389Z",
     "shell.execute_reply": "2025-03-25T05:26:30.739071Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Age columns preview:\n",
      "{'age_at_initial_pathologic_diagnosis': [58, 44, 23, 23, 30], 'days_to_birth': [-21496, -16090, -8624, -8451, -11171]}\n",
      "\n",
      "Gender columns preview:\n",
      "{'gender': ['MALE', 'FEMALE', 'FEMALE', 'FEMALE', 'MALE']}\n"
     ]
    }
   ],
   "source": [
    "# Identify candidate columns for age and gender\n",
    "candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']\n",
    "candidate_gender_cols = ['gender']\n",
    "\n",
    "# Load clinical data\n",
    "clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, 'TCGA_Adrenocortical_Cancer_(ACC)'))\n",
    "clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "\n",
    "# Extract and preview age columns\n",
    "if candidate_age_cols:\n",
    "    age_preview = {col: clinical_df[col].head(5).tolist() for col in candidate_age_cols}\n",
    "    print(\"Age columns preview:\")\n",
    "    print(age_preview)\n",
    "\n",
    "# Extract and preview gender columns\n",
    "if candidate_gender_cols:\n",
    "    gender_preview = {col: clinical_df[col].head(5).tolist() for col in candidate_gender_cols}\n",
    "    print(\"\\nGender columns preview:\")\n",
    "    print(gender_preview)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e4e68eb6",
   "metadata": {},
   "source": [
    "### Step 3: Select Demographic Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "3d649b32",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:26:30.740607Z",
     "iopub.status.busy": "2025-03-25T05:26:30.740496Z",
     "iopub.status.idle": "2025-03-25T05:26:30.743390Z",
     "shell.execute_reply": "2025-03-25T05:26:30.743089Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Selected age column: age_at_initial_pathologic_diagnosis\n",
      "Selected gender column: gender\n"
     ]
    }
   ],
   "source": [
    "# Select appropriate columns for age and gender information\n",
    "\n",
    "# Age column selection\n",
    "age_col = None\n",
    "if 'age_at_initial_pathologic_diagnosis' in {'age_at_initial_pathologic_diagnosis': [58, 44, 23, 23, 30], 'days_to_birth': [-21496, -16090, -8624, -8451, -11171]}:\n",
    "    # age_at_initial_pathologic_diagnosis seems more straightforward than days_to_birth\n",
    "    age_col = 'age_at_initial_pathologic_diagnosis'\n",
    "\n",
    "# Gender column selection\n",
    "gender_col = None\n",
    "if 'gender' in {'gender': ['MALE', 'FEMALE', 'FEMALE', 'FEMALE', 'MALE']}:\n",
    "    gender_col = 'gender'\n",
    "\n",
    "# Print the chosen columns\n",
    "print(f\"Selected age column: {age_col}\")\n",
    "print(f\"Selected gender column: {gender_col}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "a128a6ee",
   "metadata": {},
   "source": [
    "### Step 4: Feature Engineering and Validation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "816cd987",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T05:26:30.744841Z",
     "iopub.status.busy": "2025-03-25T05:26:30.744734Z",
     "iopub.status.idle": "2025-03-25T05:26:37.676212Z",
     "shell.execute_reply": "2025-03-25T05:26:37.675752Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene expression data saved to ../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/TCGA.csv\n",
      "Gene expression data shape after normalization: (19848, 79)\n",
      "Clinical data saved to ../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/TCGA.csv\n",
      "Clinical data shape: (92, 3)\n",
      "Number of samples in clinical data: 92\n",
      "Number of samples in genetic data: 79\n",
      "Number of common samples: 79\n",
      "Linked data shape: (79, 19851)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (79, 19851)\n",
      "Quartiles for 'Glucocorticoid_Sensitivity':\n",
      "  25%: 1.0\n",
      "  50% (Median): 1.0\n",
      "  75%: 1.0\n",
      "Min: 1\n",
      "Max: 1\n",
      "The distribution of the feature 'Glucocorticoid_Sensitivity' in this dataset is severely biased.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 35.0\n",
      "  50% (Median): 49.0\n",
      "  75%: 59.5\n",
      "Min: 14\n",
      "Max: 77\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1' with 31 occurrences. This represents 39.24% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "Dataset deemed not usable based on validation criteria. Data not saved.\n",
      "Preprocessing completed.\n"
     ]
    }
   ],
   "source": [
    "# Step 1: Extract and standardize clinical features\n",
    "# Create clinical features dataframe with trait (Canavan Disease) using patient IDs\n",
    "clinical_features = tcga_select_clinical_features(\n",
    "    clinical_df, \n",
    "    trait=trait, \n",
    "    age_col=age_col, \n",
    "    gender_col=gender_col\n",
    ")\n",
    "\n",
    "# Step 2: Normalize gene symbols in the gene expression data\n",
    "# The gene symbols in TCGA genetic data are already standardized, but we'll normalize them for consistency\n",
    "normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_df.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
    "print(f\"Gene expression data shape after normalization: {normalized_gene_df.shape}\")\n",
    "\n",
    "# Step 3: Link clinical and genetic data\n",
    "# Transpose genetic data to have samples as rows and genes as columns\n",
    "genetic_df_t = normalized_gene_df.T\n",
    "# Save the clinical data for reference\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "print(f\"Clinical data shape: {clinical_features.shape}\")\n",
    "\n",
    "# Verify common indices between clinical and genetic data\n",
    "clinical_indices = set(clinical_features.index)\n",
    "genetic_indices = set(genetic_df_t.index)\n",
    "common_indices = clinical_indices.intersection(genetic_indices)\n",
    "print(f\"Number of samples in clinical data: {len(clinical_indices)}\")\n",
    "print(f\"Number of samples in genetic data: {len(genetic_indices)}\")\n",
    "print(f\"Number of common samples: {len(common_indices)}\")\n",
    "\n",
    "# Link the data by using the common indices\n",
    "linked_data = pd.concat([clinical_features.loc[list(common_indices)], genetic_df_t.loc[list(common_indices)]], axis=1)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# Step 4: Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# Step 5: Determine whether the trait and demographic features are severely biased\n",
    "trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait)\n",
    "\n",
    "# Step 6: Conduct final quality validation and save information\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=\"TCGA\",\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=trait_biased,\n",
    "    df=linked_data,\n",
    "    note=f\"Dataset contains TCGA glioma and brain tumor samples with gene expression and clinical information for {trait}.\"\n",
    ")\n",
    "\n",
    "# Step 7: Save linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable based on validation criteria. Data not saved.\")\n",
    "\n",
    "print(\"Preprocessing completed.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}