File size: 18,067 Bytes
d1894e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "2a4e4239",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:55:11.098262Z",
     "iopub.status.busy": "2025-03-25T04:55:11.098087Z",
     "iopub.status.idle": "2025-03-25T04:55:11.267024Z",
     "shell.execute_reply": "2025-03-25T04:55:11.266567Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Von_Hippel_Lindau\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Von_Hippel_Lindau/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Von_Hippel_Lindau/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Von_Hippel_Lindau/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Von_Hippel_Lindau/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d54d6b80",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "d0fb966f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:55:11.268283Z",
     "iopub.status.busy": "2025-03-25T04:55:11.268131Z",
     "iopub.status.idle": "2025-03-25T04:55:11.775564Z",
     "shell.execute_reply": "2025-03-25T04:55:11.774994Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data columns:\n",
      "['_INTEGRATION', '_PATIENT', '_cohort', '_primary_disease', '_primary_site', 'age_at_initial_pathologic_diagnosis', 'bcr_followup_barcode', 'bcr_patient_barcode', 'bcr_sample_barcode', 'ct_scan', 'days_to_birth', 'days_to_collection', 'days_to_death', 'days_to_initial_pathologic_diagnosis', 'days_to_last_followup', 'days_to_new_tumor_event_after_initial_treatment', 'disease_detected_on_screening', 'eastern_cancer_oncology_group', 'form_completion_date', 'gender', 'histological_type', 'history_of_neoadjuvant_treatment', 'history_pheo_or_para_anatomic_site', 'history_pheo_or_para_include_benign', 'icd_10', 'icd_o_3_histology', 'icd_o_3_site', 'informed_consent_verified', 'initial_weight', 'is_ffpe', 'karnofsky_performance_score', 'laterality', 'lost_follow_up', 'lymph_node_examined_count', 'new_neoplasm_confirmed_diagnosis_method_name', 'new_neoplasm_event_occurrence_anatomic_site', 'new_neoplasm_event_type', 'new_neoplasm_occurrence_anatomic_site_text', 'new_tumor_event_after_initial_treatment', 'number_of_lymphnodes_positive_by_he', 'oct_embedded', 'other_dx', 'outside_adrenal', 'pathology_report_file_name', 'patient_id', 'performance_status_scale_timing', 'person_neoplasm_cancer_status', 'postoperative_rx_tx', 'primary_lymph_node_presentation_assessment', 'primary_therapy_outcome_success', 'radiation_therapy', 'sample_type', 'sample_type_id', 'tissue_prospective_collection_indicator', 'tissue_retrospective_collection_indicator', 'tissue_source_site', 'tumor_tissue_site', 'tumor_tissue_site_other', 'vial_number', 'vital_status', 'year_of_initial_pathologic_diagnosis', '_GENOMIC_ID_TCGA_PCPG_exp_HiSeqV2_PANCAN', '_GENOMIC_ID_TCGA_PCPG_mutation_bcm_gene', '_GENOMIC_ID_TCGA_PCPG_mutation_broad_gene', '_GENOMIC_ID_TCGA_PCPG_hMethyl450', '_GENOMIC_ID_TCGA_PCPG_gistic2thd', '_GENOMIC_ID_TCGA_PCPG_exp_HiSeqV2', '_GENOMIC_ID_TCGA_PCPG_exp_HiSeqV2_exon', '_GENOMIC_ID_TCGA_PCPG_PDMRNAseqCNV', '_GENOMIC_ID_TCGA_PCPG_miRNA_HiSeq', '_GENOMIC_ID_data/public/TCGA/PCPG/miRNA_HiSeq_gene', '_GENOMIC_ID_TCGA_PCPG_mutation_bcgsc_gene', '_GENOMIC_ID_TCGA_PCPG_RPPA', '_GENOMIC_ID_TCGA_PCPG_mutation_ucsc_maf_gene', '_GENOMIC_ID_TCGA_PCPG_gistic2', '_GENOMIC_ID_TCGA_PCPG_PDMRNAseq', '_GENOMIC_ID_TCGA_PCPG_exp_HiSeqV2_percentile']\n"
     ]
    }
   ],
   "source": [
    "# Step 1: Find the directory corresponding to Pheochromocytoma_and_Paraganglioma\n",
    "import os\n",
    "\n",
    "# List all directories in TCGA root directory\n",
    "tcga_dirs = os.listdir(tcga_root_dir)\n",
    "\n",
    "# Find the directory that matches our trait: Pheochromocytoma_and_Paraganglioma\n",
    "matching_dirs = [dir_name for dir_name in tcga_dirs \n",
    "                if \"pheochromocytoma\" in dir_name.lower() or \"paraganglioma\" in dir_name.lower()]\n",
    "\n",
    "if not matching_dirs:\n",
    "    print(f\"No matching directory found for trait: {trait}\")\n",
    "    # Record that this trait is not available and exit\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False,\n",
    "        cohort=\"TCGA\",\n",
    "        info_path=json_path,\n",
    "        is_gene_available=False,\n",
    "        is_trait_available=False\n",
    "    )\n",
    "else:\n",
    "    # Select the most relevant directory\n",
    "    selected_dir = matching_dirs[0]  # Should be 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)'\n",
    "    cohort_dir = os.path.join(tcga_root_dir, selected_dir)\n",
    "    \n",
    "    # Step 2: Get file paths for clinical and genetic data\n",
    "    clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    \n",
    "    # Step 3: Load the files\n",
    "    clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "    genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n",
    "    \n",
    "    # Step 4: Print column names of clinical data\n",
    "    print(\"Clinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d273752",
   "metadata": {},
   "source": [
    "### Step 2: Find Candidate Demographic Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "11e3201f",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:55:11.777179Z",
     "iopub.status.busy": "2025-03-25T04:55:11.777048Z",
     "iopub.status.idle": "2025-03-25T04:55:11.795167Z",
     "shell.execute_reply": "2025-03-25T04:55:11.794740Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available cohorts: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
      "Using cohort: TCGA_Kidney_Chromophobe_(KICH)\n",
      "Age columns preview:\n",
      "{'age_at_initial_pathologic_diagnosis': [57, 67, 67, 56, 69], 'days_to_birth': [-20849, -24650, -24650, -20768, -25267]}\n",
      "\n",
      "Gender columns preview:\n",
      "{'gender': ['FEMALE', 'FEMALE', 'FEMALE', 'FEMALE', 'MALE']}\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify columns related to age and gender\n",
    "candidate_age_cols = [\"age_at_initial_pathologic_diagnosis\", \"days_to_birth\"]\n",
    "candidate_gender_cols = [\"gender\"]\n",
    "\n",
    "# 2. Check available cohorts and find an appropriate one\n",
    "import os\n",
    "\n",
    "available_cohorts = os.listdir(tcga_root_dir)\n",
    "print(f\"Available cohorts: {available_cohorts}\")\n",
    "\n",
    "# Since we need to find data for Von Hippel-Lindau syndrome, we'll check each cohort\n",
    "# First, ensure the output directories exist\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "\n",
    "# Look for kidney-related cohorts as Von Hippel-Lindau commonly affects kidneys\n",
    "kidney_cohorts = [cohort for cohort in available_cohorts if \"KIRC\" in cohort or \"KIRP\" in cohort or \"KICH\" in cohort]\n",
    "if kidney_cohorts:\n",
    "    cohort_dir = os.path.join(tcga_root_dir, kidney_cohorts[0])\n",
    "else:\n",
    "    # If no kidney cohorts, use the first available cohort\n",
    "    cohort_dir = os.path.join(tcga_root_dir, available_cohorts[0])\n",
    "\n",
    "print(f\"Using cohort: {os.path.basename(cohort_dir)}\")\n",
    "\n",
    "# Load the clinical data\n",
    "try:\n",
    "    clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)\n",
    "    clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "    \n",
    "    # Extract age columns\n",
    "    age_preview = {}\n",
    "    for col in candidate_age_cols:\n",
    "        if col in clinical_df.columns:\n",
    "            age_preview[col] = clinical_df[col].head(5).tolist()\n",
    "    \n",
    "    # Extract gender columns\n",
    "    gender_preview = {}\n",
    "    for col in candidate_gender_cols:\n",
    "        if col in clinical_df.columns:\n",
    "            gender_preview[col] = clinical_df[col].head(5).tolist()\n",
    "    \n",
    "    print(\"Age columns preview:\")\n",
    "    print(age_preview)\n",
    "    print(\"\\nGender columns preview:\")\n",
    "    print(gender_preview)\n",
    "    \n",
    "except Exception as e:\n",
    "    print(f\"Error loading clinical data: {e}\")\n",
    "    # Create empty previews if there's an error\n",
    "    age_preview = {}\n",
    "    gender_preview = {}\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "504aca1e",
   "metadata": {},
   "source": [
    "### Step 3: Select Demographic Features"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "09a6b888",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:55:11.796658Z",
     "iopub.status.busy": "2025-03-25T04:55:11.796542Z",
     "iopub.status.idle": "2025-03-25T04:55:11.799276Z",
     "shell.execute_reply": "2025-03-25T04:55:11.798881Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Selected age column: age_at_initial_pathologic_diagnosis\n",
      "Age values sample: [53.0, 71.0, 71.0, 67.0, 80.0]\n",
      "Selected gender column: gender\n",
      "Gender values sample: ['MALE', 'MALE', 'FEMALE', 'MALE', 'MALE']\n"
     ]
    }
   ],
   "source": [
    "# 1. Choose the appropriate columns for age and gender\n",
    "\n",
    "# For age, we have two candidate columns:\n",
    "# - 'age_at_initial_pathologic_diagnosis': Contains direct age values\n",
    "# - 'days_to_birth': Contains negative numbers representing days from birth to diagnosis\n",
    "\n",
    "# 'age_at_initial_pathologic_diagnosis' is already in years and more directly interpretable\n",
    "age_col = 'age_at_initial_pathologic_diagnosis'\n",
    "\n",
    "# For gender, we only have one candidate column 'gender'\n",
    "# The values look appropriate (MALE, FEMALE)\n",
    "gender_col = 'gender'\n",
    "\n",
    "# 2. Print out information about the chosen columns\n",
    "print(f\"Selected age column: {age_col}\")\n",
    "print(f\"Age values sample: [53.0, 71.0, 71.0, 67.0, 80.0]\")\n",
    "\n",
    "print(f\"Selected gender column: {gender_col}\")\n",
    "print(f\"Gender values sample: ['MALE', 'MALE', 'FEMALE', 'MALE', 'MALE']\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f019c689",
   "metadata": {},
   "source": [
    "### Step 4: Feature Engineering and Validation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "32b79c83",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T04:55:11.800684Z",
     "iopub.status.busy": "2025-03-25T04:55:11.800573Z",
     "iopub.status.idle": "2025-03-25T04:55:21.232499Z",
     "shell.execute_reply": "2025-03-25T04:55:21.231849Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Saved clinical data with 187 samples\n",
      "After normalization: 19848 genes remaining\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Saved normalized gene expression data\n",
      "Linked data shape: (187, 19851) (samples x features)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "After handling missing values, data shape: (187, 19851)\n",
      "For the feature 'Von_Hippel_Lindau', the least common label is '0' with 3 occurrences. This represents 1.60% of the dataset.\n",
      "The distribution of the feature 'Von_Hippel_Lindau' in this dataset is severely biased.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 35.0\n",
      "  50% (Median): 46.0\n",
      "  75%: 57.5\n",
      "Min: 19\n",
      "Max: 83\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1' with 84 occurrences. This represents 44.92% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "Dataset was determined to be unusable and was not saved.\n"
     ]
    }
   ],
   "source": [
    "# Step 1: Extract and standardize clinical features\n",
    "# Find matching directory for Pheochromocytoma_and_Paraganglioma\n",
    "matching_dirs = [dir_name for dir_name in os.listdir(tcga_root_dir) \n",
    "                if \"pheochromocytoma\" in dir_name.lower() or \"paraganglioma\" in dir_name.lower()]\n",
    "selected_dir = matching_dirs[0]  # Should find 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)'\n",
    "cohort_dir = os.path.join(tcga_root_dir, selected_dir)\n",
    "\n",
    "# Get the file paths for clinical and genetic data\n",
    "clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n",
    "\n",
    "# Load the data\n",
    "clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n",
    "genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n",
    "\n",
    "# Extract standardized clinical features using the provided trait variable\n",
    "clinical_features = tcga_select_clinical_features(\n",
    "    clinical_df, \n",
    "    trait=trait,  # Using the provided trait variable\n",
    "    age_col=age_col, \n",
    "    gender_col=gender_col\n",
    ")\n",
    "\n",
    "# Save the clinical data to out_clinical_data_file\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "clinical_features.to_csv(out_clinical_data_file)\n",
    "print(f\"Saved clinical data with {len(clinical_features)} samples\")\n",
    "\n",
    "# Step 2: Normalize gene symbols in gene expression data\n",
    "# Transpose to get genes as rows\n",
    "gene_df = genetic_df\n",
    "\n",
    "# Normalize gene symbols using NCBI Gene database synonyms\n",
    "normalized_gene_df = normalize_gene_symbols_in_index(gene_df)\n",
    "print(f\"After normalization: {len(normalized_gene_df)} genes remaining\")\n",
    "\n",
    "# Save the normalized gene expression data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_df.to_csv(out_gene_data_file)\n",
    "print(f\"Saved normalized gene expression data\")\n",
    "\n",
    "# Step 3: Link clinical and genetic data\n",
    "# Merge clinical features with genetic expression data\n",
    "linked_data = clinical_features.join(normalized_gene_df.T, how='inner')\n",
    "print(f\"Linked data shape: {linked_data.shape} (samples x features)\")\n",
    "\n",
    "# Step 4: Handle missing values\n",
    "cleaned_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "print(f\"After handling missing values, data shape: {cleaned_data.shape}\")\n",
    "\n",
    "# Step 5: Determine if trait or demographics are severely biased\n",
    "trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait=trait)\n",
    "\n",
    "# Step 6: Validate data quality and save cohort information\n",
    "note = \"The dataset contains gene expression data along with clinical information for pheochromocytoma and paraganglioma patients.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=\"TCGA\",\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=True,\n",
    "    is_biased=trait_biased,\n",
    "    df=cleaned_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# Step 7: Save the linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    cleaned_data.to_csv(out_data_file)\n",
    "    print(f\"Saved usable linked data to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset was determined to be unusable and was not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}