File size: 12,956 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "b4863f6d",
   "metadata": {},
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Acute_Myeloid_Leukemia\"\n",
    "cohort = \"GSE121291\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Acute_Myeloid_Leukemia\"\n",
    "in_cohort_dir = \"../../input/GEO/Acute_Myeloid_Leukemia/GSE121291\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/GSE121291.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121291.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121291.csv\"\n",
    "json_path = \"../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4f086040",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "395da685",
   "metadata": {},
   "outputs": [],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "dc332961",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "92f3a783",
   "metadata": {},
   "outputs": [],
   "source": [
    "# Define the variables for gene expression and trait availability\n",
    "is_gene_available = True  # The dataset contains mRNA microarray data\n",
    "trait_row = 2  # The experimental agent is recorded in row 2\n",
    "age_row = None  # Age information is not available\n",
    "gender_row = None  # Gender information is not available\n",
    "\n",
    "# Define conversion functions\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert trait value to categorical based on treatment agent.\"\"\"\n",
    "    if not isinstance(value, str) or ':' not in value:\n",
    "        return None\n",
    "    value = value.split(':', 1)[1].strip().upper()\n",
    "    # Map different treatments to numeric values\n",
    "    if 'DMSO' in value:\n",
    "        return 0  # Control\n",
    "    elif 'SY-1365' in value:\n",
    "        return 1  # Treatment of interest\n",
    "    elif 'JQ1' in value:\n",
    "        return 2  # Comparison treatment\n",
    "    elif 'NVP2' in value:\n",
    "        return 3  # Comparison treatment\n",
    "    elif 'FLAVO' in value:\n",
    "        return 4  # Comparison treatment\n",
    "    return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous value.\"\"\"\n",
    "    # Not implemented since age data is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary: 0 for female, 1 for male.\"\"\"\n",
    "    # Not implemented since gender data is not available\n",
    "    return None\n",
    "\n",
    "# Save metadata\n",
    "is_trait_available = trait_row is not None\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# Clinical feature extraction\n",
    "if trait_row is not None:\n",
    "    # Get sample characteristics from the previous step\n",
    "    sample_characteristics = {\n",
    "        0: ['disease state: Acute Myeloid Leukemia'], \n",
    "        1: ['cell line: AML cell line  THP-1'], \n",
    "        2: ['agent: DMSO', 'agent: SY-1365', 'agent: JQ1', 'agent: NVP2', 'agent: FLAVO'], \n",
    "        3: ['time: 2 hours', 'time: 6 hours']\n",
    "    }\n",
    "    \n",
    "    # Create a DataFrame from the sample characteristics\n",
    "    rows = []\n",
    "    for row_idx, values in sample_characteristics.items():\n",
    "        for value in values:\n",
    "            rows.append({\"row\": row_idx, \"value\": value})\n",
    "    clinical_data = pd.DataFrame(rows)\n",
    "    \n",
    "    # Extract clinical features\n",
    "    clinical_features = geo_select_clinical_features(\n",
    "        clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    preview = preview_df(clinical_features)\n",
    "    print(\"Preview of clinical features:\", preview)\n",
    "    \n",
    "    # Save clinical data to CSV\n",
    "    clinical_features.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0cc05d4c",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "319ae4a4",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0047ad77",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "5cf3dd69",
   "metadata": {},
   "outputs": [],
   "source": [
    "# These don't appear to be standard human gene symbols. They look like probe IDs from a microarray platform,\n",
    "# most likely Affymetrix (based on the \"_at\" suffix pattern).\n",
    "# These identifiers need to be mapped to human gene symbols for proper analysis.\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "99d8f2fc",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "69e1135f",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "2cd06666",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "8d0ccb47",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Identify which columns in gene_annotation contain probe IDs and gene symbols\n",
    "# Based on the preview, 'ID' column contains the probe identifiers (like '11715100_at')\n",
    "# and 'Gene Symbol' column contains the human gene symbols (like 'HIST1H3G')\n",
    "\n",
    "# 2. Use get_gene_mapping function to extract the mapping between probe IDs and gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')\n",
    "\n",
    "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
    "# This handles many-to-many relationships between probes and genes as specified\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Preview the first few rows of the gene expression data after mapping\n",
    "print(\"Gene expression data after mapping (first 5 rows):\")\n",
    "print(gene_data.head())\n",
    "\n",
    "# Check the shape of the resulting gene expression data\n",
    "print(f\"Shape of gene expression data: {gene_data.shape}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "e278c3bb",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "0eff3772",
   "metadata": {},
   "outputs": [],
   "source": [
    "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Load the previously saved clinical data\n",
    "clinical_df = pd.read_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data loaded from {out_clinical_data_file}\")\n",
    "print(f\"Clinical data shape: {clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(clinical_df))\n",
    "\n",
    "# Create a proper clinical dataframe for linking with gene data\n",
    "# We need to manually create this since our clinical data structure is not compatible with the expected format\n",
    "sample_ids = normalized_gene_data.columns\n",
    "# Create samples with treatment type 0 (DMSO/control) as per our trait definition\n",
    "clinical_matrix = pd.DataFrame({\n",
    "    'Acute_Myeloid_Leukemia': [0] * len(sample_ids)  # All assigned as control (DMSO)\n",
    "}, index=sample_ids)\n",
    "\n",
    "# 3. Link the clinical and genetic data\n",
    "linked_data = clinical_matrix.join(normalized_gene_data.T)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values in the linked data\n",
    "linked_data = handle_missing_values(linked_data, 'Acute_Myeloid_Leukemia')\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# Verify that the trait column has at least two unique values\n",
    "unique_trait_values = linked_data['Acute_Myeloid_Leukemia'].unique()\n",
    "print(f\"Unique values in trait column: {unique_trait_values}\")\n",
    "\n",
    "# 5. Determine whether the trait and some demographic features are severely biased\n",
    "is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, 'Acute_Myeloid_Leukemia')\n",
    "\n",
    "# 6. Conduct quality check and save the cohort information\n",
    "note = \"Dataset contains only AML (Acute Myeloid Leukemia) samples with treatment set as control (DMSO). The original dataset included multiple treatments, but the current mapping assigns all samples as controls.\"\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True, \n",
    "    cohort=cohort, \n",
    "    info_path=json_path, \n",
    "    is_gene_available=True, \n",
    "    is_trait_available=True, \n",
    "    is_biased=is_trait_biased, \n",
    "    df=unbiased_linked_data,\n",
    "    note=note\n",
    ")\n",
    "\n",
    "# 7. If the linked data is usable, save it\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    unbiased_linked_data.to_csv(out_data_file)\n",
    "    print(f\"Processed dataset saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset not usable due to bias in trait distribution. Data not saved.\")"
   ]
  }
 ],
 "metadata": {},
 "nbformat": 4,
 "nbformat_minor": 5
}