File size: 21,590 Bytes
58f02a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "e97a0c06",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:12.823855Z",
"iopub.status.busy": "2025-03-25T06:17:12.823686Z",
"iopub.status.idle": "2025-03-25T06:17:12.988436Z",
"shell.execute_reply": "2025-03-25T06:17:12.988117Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Acute_Myeloid_Leukemia\"\n",
"cohort = \"GSE121431\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Acute_Myeloid_Leukemia\"\n",
"in_cohort_dir = \"../../input/GEO/Acute_Myeloid_Leukemia/GSE121431\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/GSE121431.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv\"\n",
"json_path = \"../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "6330994e",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "63b9e0c4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:12.989785Z",
"iopub.status.busy": "2025-03-25T06:17:12.989650Z",
"iopub.status.idle": "2025-03-25T06:17:13.127849Z",
"shell.execute_reply": "2025-03-25T06:17:13.127511Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"SY-1365, a covalent, first in-class CDK7 inhibitor for cancer treatment\"\n",
"!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
"!Series_overall_design\t\"Refer to individual Series\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease state: Acute Myeloid Leukemia'], 1: ['cell line: AML cell line THP-1'], 2: ['agent: DMSO', 'agent: SY-1365', 'agent: JQ1', 'agent: NVP2', 'agent: FLAVO'], 3: ['time: 2 hours', 'time: 6 hours']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "513cec37",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e27ef7d7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:13.129208Z",
"iopub.status.busy": "2025-03-25T06:17:13.129104Z",
"iopub.status.idle": "2025-03-25T06:17:13.135773Z",
"shell.execute_reply": "2025-03-25T06:17:13.135504Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data preview:\n",
"{'GSM3430924': [1.0], 'GSM3430925': [1.0], 'GSM3430926': [1.0], 'GSM3430927': [1.0], 'GSM3430928': [1.0], 'GSM3430929': [1.0], 'GSM3430930': [1.0], 'GSM3430931': [1.0], 'GSM3430932': [1.0], 'GSM3430933': [1.0], 'GSM3430934': [1.0], 'GSM3430935': [1.0], 'GSM3430936': [1.0], 'GSM3430937': [1.0], 'GSM3430938': [1.0], 'GSM3430939': [1.0], 'GSM3430940': [1.0], 'GSM3430941': [1.0], 'GSM3430942': [1.0], 'GSM3430943': [1.0], 'GSM3430944': [1.0], 'GSM3430945': [1.0], 'GSM3430946': [1.0], 'GSM3430947': [1.0], 'GSM3430948': [1.0], 'GSM3430949': [1.0], 'GSM3430950': [1.0], 'GSM3430951': [1.0], 'GSM3430952': [1.0], 'GSM3430953': [1.0]}\n",
"Clinical data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset likely contains gene expression data\n",
"# It's studying inhibitors for cancer treatment, which typically involves gene expression analysis\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Looking at the sample characteristics dictionary:\n",
"# - trait_row = 0 (disease state: Acute Myeloid Leukemia)\n",
"# - age_row is None (not available)\n",
"# - gender_row is None (not available)\n",
"trait_row = 0\n",
"age_row = None\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (1 for AML, 0 for control)\"\"\"\n",
" if value is None:\n",
" return None\n",
" # Extract the value after the colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # In this dataset, all samples appear to be AML\n",
" if \"Acute Myeloid Leukemia\" in value:\n",
" return 1\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous\"\"\"\n",
" # Not used as age data is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
" # Not used as gender data is not available\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Initial filtering on the usability of the dataset\n",
"# trait_row is not None, so trait data is available\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available)\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we extract clinical features\n",
"if trait_row is not None:\n",
" # Use clinical_data from previous step (assumed to be available)\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the clinical data\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical data preview:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data to CSV\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=True)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "afe17139",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "6560b2b1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:13.137102Z",
"iopub.status.busy": "2025-03-25T06:17:13.136996Z",
"iopub.status.idle": "2025-03-25T06:17:13.291806Z",
"shell.execute_reply": "2025-03-25T06:17:13.291437Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at',\n",
" '11715104_s_at', '11715105_at', '11715106_x_at', '11715107_s_at',\n",
" '11715108_x_at', '11715109_at', '11715110_at', '11715111_s_at',\n",
" '11715112_at', '11715113_x_at', '11715114_x_at', '11715115_s_at',\n",
" '11715116_s_at', '11715117_x_at', '11715118_s_at', '11715119_s_at'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "077b7ac2",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "7a06e561",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:13.293189Z",
"iopub.status.busy": "2025-03-25T06:17:13.293078Z",
"iopub.status.idle": "2025-03-25T06:17:13.295017Z",
"shell.execute_reply": "2025-03-25T06:17:13.294718Z"
}
},
"outputs": [],
"source": [
"# The gene identifiers appear to be Affymetrix probe IDs (format: #########_at, #########_s_at, #########_x_at)\n",
"# These are not human gene symbols and need to be mapped to gene symbols\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "3e6e8f67",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "a41e8fb9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:13.296366Z",
"iopub.status.busy": "2025-03-25T06:17:13.296266Z",
"iopub.status.idle": "2025-03-25T06:17:16.346530Z",
"shell.execute_reply": "2025-03-25T06:17:16.346168Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['11715100_at', '11715101_s_at', '11715102_x_at', '11715103_x_at', '11715104_s_at'], 'GeneChip Array': ['Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array', 'Human Genome PrimeView Array'], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': [40780.0, 40780.0, 40780.0, 40780.0, 40780.0], 'Sequence Type': ['Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence', 'Consensus sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database', 'Affymetrix Proprietary Database'], 'Transcript ID(Array Design)': ['g21264570', 'g21264570', 'g21264570', 'g22748780', 'g30039713'], 'Target Description': ['g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g21264570 /TID=g21264570 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g21264570 /REP_ORG=Homo sapiens', 'g22748780 /TID=g22748780 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g22748780 /REP_ORG=Homo sapiens', 'g30039713 /TID=g30039713 /CNT=1 /FEA=FLmRNA /TIER=FL /STK=0 /DEF=g30039713 /REP_ORG=Homo sapiens'], 'GB_ACC': [nan, nan, nan, nan, nan], 'GI': [21264570.0, 21264570.0, 21264570.0, 22748780.0, 30039713.0], 'UniGene ID': ['Hs.247813', 'Hs.247813', 'Hs.247813', 'Hs.465643', 'Hs.352515'], 'Genome Version': ['February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)', 'February 2009 (Genome Reference Consortium GRCh37)'], 'Alignments': ['chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr6:26271145-26271612 (-) // 100.0 // p22.2', 'chr19:4639529-5145579 (+) // 48.53 // p13.3', 'chr17:72920369-72929640 (+) // 100.0 // q25.1'], 'Gene Title': ['histone cluster 1, H3g', 'histone cluster 1, H3g', 'histone cluster 1, H3g', 'tumor necrosis factor, alpha-induced protein 8-like 1', 'otopetrin 2'], 'Gene Symbol': ['HIST1H3G', 'HIST1H3G', 'HIST1H3G', 'TNFAIP8L1', 'OTOP2'], 'Chromosomal Location': ['chr6p21.3', 'chr6p21.3', 'chr6p21.3', 'chr19p13.3', 'chr17q25.1'], 'Unigene Cluster Type': ['full length', 'full length', 'full length', 'full length', 'full length'], 'Ensembl': ['ENSG00000248541', 'ENSG00000248541', 'ENSG00000248541', 'ENSG00000185361', 'ENSG00000183034'], 'Entrez Gene': ['8355', '8355', '8355', '126282', '92736'], 'SwissProt': ['P68431', 'P68431', 'P68431', 'Q8WVP5', 'Q7RTS6'], 'OMIM': ['602815', '602815', '602815', '---', '607827'], 'RefSeq Protein ID': ['NP_003525', 'NP_003525', 'NP_003525', 'NP_001161414 /// NP_689575', 'NP_835454'], 'RefSeq Transcript ID': ['NM_003534', 'NM_003534', 'NM_003534', 'NM_001167942 /// NM_152362', 'NM_178160'], 'SPOT_ID': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "31f470c7",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "216c6a4b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:16.348275Z",
"iopub.status.busy": "2025-03-25T06:17:16.348162Z",
"iopub.status.idle": "2025-03-25T06:17:16.532605Z",
"shell.execute_reply": "2025-03-25T06:17:16.532234Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mapped gene data preview - first 20 gene symbols:\n",
"Index(['A1BG', 'A1CF', 'A2LD1', 'A2M', 'A2ML1', 'A4GALT', 'A4GNT', 'AAA1',\n",
" 'AAAS', 'AACS', 'AACSP1', 'AADAC', 'AADACL2', 'AADACL3', 'AADACL4',\n",
" 'AADAT', 'AAGAB', 'AAK1', 'AAMP', 'AANAT'],\n",
" dtype='object', name='Gene')\n",
"Shape of gene expression data: (19534, 30)\n"
]
}
],
"source": [
"# 1. Identify the columns for gene identifiers and gene symbols\n",
"# From the preview, we can see that 'ID' column contains probe IDs matching the gene expression data\n",
"# and 'Gene Symbol' column contains the gene symbols we need\n",
"# These correspond to the identifiers seen in gene_data.index\n",
"\n",
"# 2. Get the gene mapping dataframe\n",
"prob_col = 'ID'\n",
"gene_col = 'Gene Symbol'\n",
"mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression\n",
"gene_data = apply_gene_mapping(gene_data, mapping_data)\n",
"\n",
"# Preview the result\n",
"print(\"Mapped gene data preview - first 20 gene symbols:\")\n",
"print(gene_data.index[:20])\n",
"print(f\"Shape of gene expression data: {gene_data.shape}\")\n"
]
},
{
"cell_type": "markdown",
"id": "9a258fd0",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "28d6942a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:17:16.534359Z",
"iopub.status.busy": "2025-03-25T06:17:16.534251Z",
"iopub.status.idle": "2025-03-25T06:17:22.375971Z",
"shell.execute_reply": "2025-03-25T06:17:22.375618Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE121431.csv\n",
"Clinical data loaded from ../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE121431.csv\n",
"Clinical data shape: (1, 30)\n",
"Clinical data preview:\n",
"{'GSM3430924': [1.0], 'GSM3430925': [1.0], 'GSM3430926': [1.0], 'GSM3430927': [1.0], 'GSM3430928': [1.0], 'GSM3430929': [1.0], 'GSM3430930': [1.0], 'GSM3430931': [1.0], 'GSM3430932': [1.0], 'GSM3430933': [1.0], 'GSM3430934': [1.0], 'GSM3430935': [1.0], 'GSM3430936': [1.0], 'GSM3430937': [1.0], 'GSM3430938': [1.0], 'GSM3430939': [1.0], 'GSM3430940': [1.0], 'GSM3430941': [1.0], 'GSM3430942': [1.0], 'GSM3430943': [1.0], 'GSM3430944': [1.0], 'GSM3430945': [1.0], 'GSM3430946': [1.0], 'GSM3430947': [1.0], 'GSM3430948': [1.0], 'GSM3430949': [1.0], 'GSM3430950': [1.0], 'GSM3430951': [1.0], 'GSM3430952': [1.0], 'GSM3430953': [1.0]}\n",
"Linked data shape: (30, 19327)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (30, 19327)\n",
"Unique values in trait column: [1.]\n",
"Quartiles for 'Acute_Myeloid_Leukemia':\n",
" 25%: 1.0\n",
" 50% (Median): 1.0\n",
" 75%: 1.0\n",
"Min: 1.0\n",
"Max: 1.0\n",
"The distribution of the feature 'Acute_Myeloid_Leukemia' in this dataset is severely biased.\n",
"\n",
"A new JSON file was created at: ../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\n",
"Dataset not usable due to bias in trait distribution. Data not saved.\n"
]
}
],
"source": [
"# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Load the previously saved clinical data instead of re-extracting it\n",
"clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)\n",
"print(f\"Clinical data loaded from {out_clinical_data_file}\")\n",
"print(f\"Clinical data shape: {clinical_df.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(clinical_df))\n",
"\n",
"# 3. Link the clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 4. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# Verify that the trait column has at least two unique values\n",
"unique_trait_values = linked_data[trait].unique()\n",
"print(f\"Unique values in trait column: {unique_trait_values}\")\n",
"\n",
"# 5. Determine whether the trait and some demographic features are severely biased\n",
"is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 6. Conduct quality check and save the cohort information\n",
"note = \"Dataset contains only AML (Acute Myeloid Leukemia) samples, which may limit certain analyses.\"\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=note\n",
")\n",
"\n",
"# 7. If the linked data is usable, save it\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Processed dataset saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset not usable due to bias in trait distribution. Data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|