File size: 21,892 Bytes
6bc7e45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "09614faf",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:34.133638Z",
     "iopub.status.busy": "2025-03-25T06:24:34.133452Z",
     "iopub.status.idle": "2025-03-25T06:24:34.297864Z",
     "shell.execute_reply": "2025-03-25T06:24:34.297527Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Alopecia\"\n",
    "cohort = \"GSE18876\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Alopecia\"\n",
    "in_cohort_dir = \"../../input/GEO/Alopecia/GSE18876\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Alopecia/GSE18876.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Alopecia/gene_data/GSE18876.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Alopecia/clinical_data/GSE18876.csv\"\n",
    "json_path = \"../../output/preprocess/Alopecia/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7ec98190",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "21f44c67",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:34.299091Z",
     "iopub.status.busy": "2025-03-25T06:24:34.298944Z",
     "iopub.status.idle": "2025-03-25T06:24:34.408103Z",
     "shell.execute_reply": "2025-03-25T06:24:34.407783Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Transcriptional Profile of Aging in Healthy Human Skin\"\n",
      "!Series_summary\t\"Gene expression changes were assessed from the non sun-exposed skin of the lower back of 98 healthy males aged 19-86. We show that contrary to previous thought, genome wide transcriptional activity does not display an exclusively linear correlation with ageing, but rather, in human skin, undergoes a period of significant transient change between 30 and 45 years of age. The identified transient transcriptional changes suggest a period of heightened metabolic activity and cellular damage mediated primarily through the actions of TP53 (tumour protein 53) and TNF (tumour necrosis factor). We also identified a subgroup of the population characterised by increased expression of a large group of hair follicle genes that correlates strongly with a younger age of onset and increasing severity of androgenetic alopecia.\"\n",
      "!Series_overall_design\t\"Skin was collected from the lower back at the level of the belt, aproximately 5cm lateral to midline from healthy males, (defined as; non-smoking, no hospital admissions in the previous 5 years, no significant medical conditions or medications). Each sample was individually hybridised to an exon 1.0 ST array.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['age: 19', 'age: 20', 'age: 21', 'age: 22', 'age: 23', 'age: 24', 'age: 25', 'age: 26', 'age: 27', 'age: 30', 'age: 31', 'age: 33', 'age: 34', 'age: 36', 'age: 38', 'age: 39', 'age: 41', 'age: 42', 'age: 43', 'age: 44', 'age: 45', 'age: 47', 'age: 49', 'age: 50', 'age: 51', 'age: 52', 'age: 53', 'age: 54', 'age: 55', 'age: 57'], 1: ['tissue: skin']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d63f3b0",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "8f27f0ea",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:34.409387Z",
     "iopub.status.busy": "2025-03-25T06:24:34.409283Z",
     "iopub.status.idle": "2025-03-25T06:24:34.413299Z",
     "shell.execute_reply": "2025-03-25T06:24:34.413016Z"
    }
   },
   "outputs": [],
   "source": [
    "# 1. Gene Expression Data Availability \n",
    "# Based on the background information, this dataset contains transcriptional profiles from skin samples\n",
    "# hybridized to exon arrays, which indicates gene expression data is available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# Age is available in row 0\n",
    "age_row = 0\n",
    "\n",
    "# Gender is not explicitly mentioned, but the background information states \"healthy males\" only,\n",
    "# so all subjects are male (constant). Therefore gender data is not useful for our analysis.\n",
    "gender_row = None\n",
    "\n",
    "# For trait (Alopecia), there's no direct mention in the sample characteristics,\n",
    "# but the background information mentions a \"subgroup of the population characterised by... androgenetic alopecia\"\n",
    "# However, we don't have this information in the sample characteristics dictionary\n",
    "trait_row = None \n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_age(age_str):\n",
    "    \"\"\"Convert age string to numeric value.\"\"\"\n",
    "    try:\n",
    "        # Extract the number after the colon and space\n",
    "        if ':' in age_str:\n",
    "            age_val = age_str.split(': ')[1].strip()\n",
    "            return float(age_val)\n",
    "        else:\n",
    "            return None\n",
    "    except:\n",
    "        return None\n",
    "\n",
    "def convert_trait(trait_str):\n",
    "    \"\"\"\n",
    "    Convert trait string to binary value.\n",
    "    This function is defined but won't be used since trait_row is None.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "def convert_gender(gender_str):\n",
    "    \"\"\"\n",
    "    Convert gender string to binary value.\n",
    "    This function is defined but won't be used since gender_row is None.\n",
    "    \"\"\"\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Determine trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering and save the information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is None, we skip the clinical feature extraction step entirely\n",
    "if trait_row is not None:\n",
    "    # This block won't execute in this case since trait_row is None\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the dataframe\n",
    "    preview = preview_df(selected_clinical_df)\n",
    "    print(\"Clinical data preview:\")\n",
    "    print(preview)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1f019122",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "be9c3b27",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:34.414482Z",
     "iopub.status.busy": "2025-03-25T06:24:34.414382Z",
     "iopub.status.idle": "2025-03-25T06:24:34.589582Z",
     "shell.execute_reply": "2025-03-25T06:24:34.589269Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First 20 gene/probe identifiers:\n",
      "Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
      "       '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
      "       '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
      "       '2317472', '2317512'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths again to access the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n",
    "print(\"First 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "66e2b791",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "9ebeea21",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:34.591382Z",
     "iopub.status.busy": "2025-03-25T06:24:34.591274Z",
     "iopub.status.idle": "2025-03-25T06:24:34.593146Z",
     "shell.execute_reply": "2025-03-25T06:24:34.592848Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examine the gene identifiers in the given index\n",
    "# The identifiers appear to be numerical, which suggests they are not human gene symbols\n",
    "# Human gene symbols typically follow specific naming conventions (e.g., BRCA1, TP53)\n",
    "# These look like probe IDs that would need mapping to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "5bc10530",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "eed54af9",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:34.594594Z",
     "iopub.status.busy": "2025-03-25T06:24:34.594494Z",
     "iopub.status.idle": "2025-03-25T06:24:38.350708Z",
     "shell.execute_reply": "2025-03-25T06:24:38.350343Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "0556a9fb",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "fc870895",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:38.352478Z",
     "iopub.status.busy": "2025-03-25T06:24:38.352359Z",
     "iopub.status.idle": "2025-03-25T06:24:41.915337Z",
     "shell.execute_reply": "2025-03-25T06:24:41.914765Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "First few rows of gene mapping:\n",
      "        ID                                               Gene\n",
      "0  2315100  NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-As...\n",
      "1  2315106                                                ---\n",
      "2  2315109                                                ---\n",
      "3  2315111                                                ---\n",
      "4  2315113                                                ---\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene symbols after mapping:\n",
      "Index(['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1',\n",
      "       'A1-', 'A10', 'A11', 'A12', 'A13', 'A14', 'A16', 'A1BG', 'A1BG-AS',\n",
      "       'A1CF'],\n",
      "      dtype='object', name='Gene')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "Gene expression data saved to ../../output/preprocess/Alopecia/gene_data/GSE18876.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the columns for gene identifiers and gene symbols in the gene annotation data\n",
    "# From the preview, 'ID' column contains the same numeric identifiers as in gene expression data\n",
    "# and 'gene_assignment' contains the gene symbol information\n",
    "\n",
    "# 2. Get gene mapping dataframe by extracting these columns\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')\n",
    "\n",
    "# Check the first few rows of the mapping\n",
    "print(\"First few rows of gene mapping:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene-level expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Check the first few gene symbols in the processed data\n",
    "print(\"\\nFirst 20 gene symbols after mapping:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# Save gene data to CSV\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "63562ae8",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "9d8aa50b",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:24:41.917153Z",
     "iopub.status.busy": "2025-03-25T06:24:41.916774Z",
     "iopub.status.idle": "2025-03-25T06:24:43.122801Z",
     "shell.execute_reply": "2025-03-25T06:24:43.122259Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: (18418, 98)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Alopecia/gene_data/GSE18876.csv\n",
      "No trait data available for clinical feature extraction\n",
      "Empty clinical data saved to ../../output/preprocess/Alopecia/clinical_data/GSE18876.csv\n",
      "Creating gene data representation without clinical features...\n",
      "Linked data shape: (98, 18418)\n",
      "Dataset usability: False\n",
      "Dataset is not usable for trait-gene association studies due to missing trait data.\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "\n",
    "# Save the normalized gene data to a CSV file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Since trait_row is None (no trait data available), we'll create an empty clinical dataframe\n",
    "print(\"No trait data available for clinical feature extraction\")\n",
    "selected_clinical_df = pd.DataFrame()\n",
    "\n",
    "# Save empty clinical data to a CSV file for consistency\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Empty clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# Create a linked dataframe with just gene data (no clinical features)\n",
    "print(\"Creating gene data representation without clinical features...\")\n",
    "linked_data = normalized_gene_data.T  # Transpose to get samples as rows\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 3-6. Since trait data is unavailable, we'll use is_final=False in validation\n",
    "# We'll skip handling missing values and bias checking since they require trait data\n",
    "\n",
    "# Update the note to reflect the actual dataset\n",
    "note = \"Dataset contains gene expression data from skin samples of healthy males of different ages, as described in the study 'Transcriptional Profile of Aging in Healthy Human Skin'. The study mentions a subgroup with androgenetic alopecia, but this information is not available in the clinical annotations.\"\n",
    "\n",
    "# Perform validation with is_final=False since we can't evaluate bias without trait data\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "print(f\"Dataset usability: {is_usable}\")\n",
    "print(\"Dataset is not usable for trait-gene association studies due to missing trait data.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}