File size: 21,157 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "633b6e24",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:27:58.220636Z",
"iopub.status.busy": "2025-03-25T06:27:58.220266Z",
"iopub.status.idle": "2025-03-25T06:27:58.390637Z",
"shell.execute_reply": "2025-03-25T06:27:58.390299Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Amyotrophic_Lateral_Sclerosis\"\n",
"cohort = \"GSE212134\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Amyotrophic_Lateral_Sclerosis\"\n",
"in_cohort_dir = \"../../input/GEO/Amyotrophic_Lateral_Sclerosis/GSE212134\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/GSE212134.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE212134.csv\"\n",
"json_path = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "a75b92b5",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "a0b60a19",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:27:58.392097Z",
"iopub.status.busy": "2025-03-25T06:27:58.391943Z",
"iopub.status.idle": "2025-03-25T06:27:58.467075Z",
"shell.execute_reply": "2025-03-25T06:27:58.466722Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Establishing mRNA and microRNA interactions driving disease heterogeneity in Amyotrophic lateral sclerosis\"\n",
"!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n",
"!Series_overall_design\t\"Refer to individual Series\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['gender: Female', 'gender: Male']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "5d73a6dd",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "51fbb8de",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:27:58.468351Z",
"iopub.status.busy": "2025-03-25T06:27:58.468240Z",
"iopub.status.idle": "2025-03-25T06:27:58.485912Z",
"shell.execute_reply": "2025-03-25T06:27:58.485624Z"
}
},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the series title, it mentions \"mRNA and microRNA interactions\", \n",
"# indicating gene expression data is likely available.\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# There's no explicit disease/trait status in the characteristics dictionary\n",
"# The dataset is about ALS, but we don't see any classification of subjects\n",
"trait_row = None\n",
"\n",
"# Age data is not present in the sample characteristics\n",
"age_row = None\n",
"\n",
"# Gender is available at index 0\n",
"gender_row = 0\n",
"\n",
"# 2.2 Data Type Conversion\n",
"# Since trait data is not available, we define a placeholder function\n",
"def convert_trait(value):\n",
" return None\n",
"\n",
"# Age conversion function (though not used in this case)\n",
"def convert_age(value):\n",
" return None\n",
"\n",
"# Gender conversion function\n",
"def convert_gender(value):\n",
" if not value or \":\" not in value:\n",
" return None\n",
" \n",
" gender = value.split(\":\", 1)[1].strip().lower()\n",
" \n",
" if \"female\" in gender:\n",
" return 0\n",
" elif \"male\" in gender:\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save the cohort information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# Skip the clinical feature extraction since trait_row is None (is_trait_available is False)\n"
]
},
{
"cell_type": "markdown",
"id": "3cf502f9",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "faccb4aa",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:27:58.487072Z",
"iopub.status.busy": "2025-03-25T06:27:58.486960Z",
"iopub.status.idle": "2025-03-25T06:27:58.575148Z",
"shell.execute_reply": "2025-03-25T06:27:58.574745Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['2315554', '2315633', '2315674', '2315739', '2315894', '2315918',\n",
" '2315951', '2316218', '2316245', '2316379', '2316558', '2316605',\n",
" '2316746', '2316905', '2316953', '2317246', '2317317', '2317434',\n",
" '2317472', '2317512'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 22011 genes × 42 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "8166fc2f",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "620b5fe3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:27:58.576608Z",
"iopub.status.busy": "2025-03-25T06:27:58.576456Z",
"iopub.status.idle": "2025-03-25T06:27:58.578424Z",
"shell.execute_reply": "2025-03-25T06:27:58.578125Z"
}
},
"outputs": [],
"source": [
"# Looking at the gene identifiers, these appear to be numeric probe IDs from a microarray platform\n",
"# rather than standard human gene symbols (which would typically be alphanumeric like APOE, TP53, etc.)\n",
"# These numeric IDs (like '2315554') need to be mapped to official gene symbols for biological interpretation.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "6f2d9ec7",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "6c2d1a09",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:27:58.579662Z",
"iopub.status.busy": "2025-03-25T06:27:58.579557Z",
"iopub.status.idle": "2025-03-25T06:28:01.171779Z",
"shell.execute_reply": "2025-03-25T06:28:01.171433Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['2315100', '2315106', '2315109', '2315111', '2315113'], 'GB_LIST': ['NR_024005,NR_034090,NR_024004,AK093685', 'DQ786314', nan, nan, 'DQ786265'], 'SPOT_ID': ['chr1:11884-14409', 'chr1:14760-15198', 'chr1:19408-19712', 'chr1:25142-25532', 'chr1:27563-27813'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'RANGE_GB': ['NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10', 'NC_000001.10'], 'RANGE_STRAND': ['+', '+', '+', '+', '+'], 'RANGE_START': ['11884', '14760', '19408', '25142', '27563'], 'RANGE_STOP': ['14409', '15198', '19712', '25532', '27813'], 'total_probes': ['20', '8', '4', '4', '4'], 'gene_assignment': ['NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 // 15q26.3 // 100288486 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771 /// AK093685 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 // 2q13 // 84771', '---', '---', '---', '---'], 'mrna_assignment': ['NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 9 (DDX11L9), non-coding RNA. // chr1 // 100 // 80 // 16 // 16 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 100 // 75 // 15 // 15 // 0 /// AK093685 // GenBank // Homo sapiens cDNA FLJ36366 fis, clone THYMU2007824. // chr1 // 94 // 80 // 15 // 16 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 // chr1 // 100 // 80 // 16 // 16 // 0 /// ENST00000518655 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000253101 // chr1 // 100 // 80 // 16 // 16 // 0', 'DQ786314 // GenBank // Homo sapiens clone HLS_IMAGE_811138 mRNA sequence. // chr1 // 100 // 38 // 3 // 3 // 0', '---', '---', 'DQ786265 // GenBank // Homo sapiens clone HLS_IMAGE_298685 mRNA sequence. // chr1 // 100 // 100 // 4 // 4 // 0'], 'category': ['main', 'main', '---', '---', 'main']}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "ee683997",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "d5ea13bd",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:01.173223Z",
"iopub.status.busy": "2025-03-25T06:28:01.173099Z",
"iopub.status.idle": "2025-03-25T06:28:01.606571Z",
"shell.execute_reply": "2025-03-25T06:28:01.606170Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"After mapping: 48895 genes × 42 samples\n",
"\n",
"First 10 gene symbols after mapping:\n",
"Index(['A-', 'A-2', 'A-52', 'A-E', 'A-I', 'A-II', 'A-IV', 'A-V', 'A0', 'A1'], dtype='object', name='Gene')\n"
]
}
],
"source": [
"# Identify the column containing gene/probe IDs and gene symbols\n",
"# From the gene_annotation preview, we can see:\n",
"# - 'ID' column contains the same numeric identifiers as in the gene expression data\n",
"# - 'gene_assignment' column contains gene information with gene symbols\n",
"\n",
"# 1. Identify mapping columns and create the mapping dataframe\n",
"id_col = 'ID' # Column containing probe IDs\n",
"gene_col = 'gene_assignment' # Column containing gene symbols\n",
"\n",
"# 2. Create a mapping dataframe from gene annotation\n",
"gene_mapping = get_gene_mapping(gene_annotation, id_col, gene_col)\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"# The 'apply_gene_mapping' function handles splitting values among multiple genes\n",
"# and summing contributions for each gene\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Check the result - print dimensions and preview some gene symbols\n",
"print(f\"\\nAfter mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(\"\\nFirst 10 gene symbols after mapping:\")\n",
"print(gene_data.index[:10])\n"
]
},
{
"cell_type": "markdown",
"id": "e2b068a5",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "5b52469b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:01.608047Z",
"iopub.status.busy": "2025-03-25T06:28:01.607914Z",
"iopub.status.idle": "2025-03-25T06:28:02.219349Z",
"shell.execute_reply": "2025-03-25T06:28:02.218945Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (18418, 42)\n",
"First 5 gene symbols after normalization: Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1'], dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv\n",
"Sample IDs in clinical data:\n",
"Index(['!Sample_geo_accession', 'GSM6509811', 'GSM6509812', 'GSM6509813',\n",
" 'GSM6509814'],\n",
" dtype='object') ...\n",
"Sample IDs in gene expression data:\n",
"Index(['GSM6509811', 'GSM6509812', 'GSM6509813', 'GSM6509814', 'GSM6509815'], dtype='object') ...\n",
"Trait data was determined to be unavailable in previous steps.\n",
"Abnormality detected in the cohort: GSE212134. Preprocessing failed.\n",
"Dataset deemed not usable for associational studies.\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the index of gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"First 5 gene symbols after normalization: {normalized_gene_data.index[:5]}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Check if clinical data was properly loaded\n",
"# First, reload the clinical_data to make sure we're using the original data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Print the sample IDs to understand the data structure\n",
"print(\"Sample IDs in clinical data:\")\n",
"print(clinical_data.columns[:5], \"...\") # Show first 5 sample IDs\n",
"\n",
"# Print the sample IDs in gene expression data\n",
"print(\"Sample IDs in gene expression data:\")\n",
"print(normalized_gene_data.columns[:5], \"...\") # Show first 5 sample IDs\n",
"\n",
"# Check trait availability from previous steps\n",
"is_trait_available = trait_row is not None\n",
"linked_data = None\n",
"\n",
"if is_trait_available:\n",
" # Extract clinical features with proper sample IDs\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age if age_row is not None else None,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender if gender_row is not None else None\n",
" )\n",
" \n",
" print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
" print(f\"Clinical data preview: {preview_df(selected_clinical_df, n=3)}\")\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" \n",
" # Link clinical and genetic data\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
" print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
" \n",
" # 3. Handle missing values\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # 4. Determine if trait and demographic features are biased\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" print(f\"Data shape after removing biased features: {linked_data.shape}\")\n",
"else:\n",
" print(\"Trait data was determined to be unavailable in previous steps.\")\n",
" is_biased = True # Dataset can't be used without trait data\n",
" linked_data = pd.DataFrame() # Empty DataFrame instead of artificial data\n",
"\n",
"# 5. Validate and save cohort info\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data if not linked_data.empty else pd.DataFrame(index=normalized_gene_data.columns),\n",
" note=\"Dataset contains gene expression data from ALS patients, but lacks trait information (disease status) required for associational studies.\"\n",
")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset deemed not usable for associational studies.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|