File size: 30,672 Bytes
92d2f89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "4d415b3f",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:42.673897Z",
"iopub.status.busy": "2025-03-25T06:28:42.673682Z",
"iopub.status.idle": "2025-03-25T06:28:42.841808Z",
"shell.execute_reply": "2025-03-25T06:28:42.841478Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Amyotrophic_Lateral_Sclerosis\"\n",
"cohort = \"GSE61322\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Amyotrophic_Lateral_Sclerosis\"\n",
"in_cohort_dir = \"../../input/GEO/Amyotrophic_Lateral_Sclerosis/GSE61322\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/GSE61322.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE61322.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE61322.csv\"\n",
"json_path = \"../../output/preprocess/Amyotrophic_Lateral_Sclerosis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "19a9c285",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "dc9d5f91",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:42.843277Z",
"iopub.status.busy": "2025-03-25T06:28:42.843128Z",
"iopub.status.idle": "2025-03-25T06:28:42.906276Z",
"shell.execute_reply": "2025-03-25T06:28:42.905959Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2 [03_AOA2_patient_blood_2011]\"\n",
"!Series_summary\t\"Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.\"\n",
"!Series_overall_design\t\"Total RNA samples obtained from 1) an AOA2 patient and carrier fibroblast cell lines, 2) 2 biological replicates of haploinsufficient SETX fibroblast cell lines transfected with one of 4 different wild-type and mutant SETX constructs, 3) peripheral blood from 33 patients and carriers across 12 families, and 4) 2 tissues from 2 Setx knockout and 2 control mice were analyzed using expression microarray.\"\n",
"!Series_overall_design\t\"\"\n",
"!Series_overall_design\t\"This submission represents the microarray component of study.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['diagnosis: carrier', 'diagnosis: affected'], 1: ['disease: AOA2'], 2: ['definite analysis: definite', 'definite analysis: presumed']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "ae8b27e5",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "5f3da0a4",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:42.907407Z",
"iopub.status.busy": "2025-03-25T06:28:42.907294Z",
"iopub.status.idle": "2025-03-25T06:28:42.913238Z",
"shell.execute_reply": "2025-03-25T06:28:42.912936Z"
}
},
"outputs": [],
"source": [
"import pandas as pd\n",
"import os\n",
"import json\n",
"from typing import Callable, Optional, Dict, Any\n",
"import numpy as np\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains gene expression data from microarray analysis\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Identify the keys for trait, age, and gender\n",
"# From the Sample Characteristics, we can see that:\n",
"# Key 0 has ['diagnosis: carrier', 'diagnosis: affected'] which can be used for the trait\n",
"trait_row = 0\n",
"# Age is not explicitly available in the provided sample characteristics\n",
"age_row = None\n",
"# Gender is not explicitly available in the provided sample characteristics\n",
"gender_row = None\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"def convert_trait(value: str) -> int:\n",
" \"\"\"Convert trait value to binary format.\"\"\"\n",
" if value is None or pd.isna(value):\n",
" return None\n",
" \n",
" if isinstance(value, str):\n",
" value = value.lower().strip()\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" if \"affected\" in value:\n",
" return 1 # For affected patients (AOA2)\n",
" elif \"carrier\" in value:\n",
" return 0 # For carriers/controls\n",
" \n",
" return None\n",
"\n",
"def convert_age(value: str) -> float:\n",
" \"\"\"Convert age value to continuous format.\"\"\"\n",
" # Age data is not available, but this function is defined for completeness\n",
" return None\n",
"\n",
"def convert_gender(value: str) -> int:\n",
" \"\"\"Convert gender value to binary format.\"\"\"\n",
" # Gender data is not available, but this function is defined for completeness\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save initial information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if is_trait_available:\n",
" # Load clinical data\n",
" try:\n",
" files = os.listdir(in_cohort_dir)\n",
" clinical_data_file = None\n",
" for file in files:\n",
" if file.endswith(\"_series_matrix.txt\"):\n",
" clinical_data_file = os.path.join(in_cohort_dir, file)\n",
" break\n",
" \n",
" if clinical_data_file:\n",
" # Load the file to extract sample characteristics\n",
" sample_data = []\n",
" with open(clinical_data_file, 'r') as f:\n",
" for line in f:\n",
" if line.startswith('!Sample_char') or line.startswith('!Sample_characteristics'):\n",
" parts = line.strip().split('\\t')\n",
" if len(parts) > 1:\n",
" sample_data.append(parts[1:])\n",
" \n",
" # Create clinical dataframe if data is found\n",
" if sample_data:\n",
" # Transpose the data to have samples as columns\n",
" clinical_df = pd.DataFrame(sample_data)\n",
" \n",
" # Extract clinical features using the library function\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_df,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the selected clinical features\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save clinical data\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except Exception as e:\n",
" print(f\"Error processing clinical data: {str(e)}\")\n",
" # Even if extraction fails, we've already recorded the trait availability\n"
]
},
{
"cell_type": "markdown",
"id": "346b19fd",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "579dcf78",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:42.914260Z",
"iopub.status.busy": "2025-03-25T06:28:42.914154Z",
"iopub.status.idle": "2025-03-25T06:28:42.983705Z",
"shell.execute_reply": "2025-03-25T06:28:42.983326Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1651209', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651235', 'ILMN_1651236', 'ILMN_1651237', 'ILMN_1651238',\n",
" 'ILMN_1651254', 'ILMN_1651260', 'ILMN_1651262', 'ILMN_1651268',\n",
" 'ILMN_1651278', 'ILMN_1651282', 'ILMN_1651285', 'ILMN_1651286',\n",
" 'ILMN_1651292', 'ILMN_1651303', 'ILMN_1651309', 'ILMN_1651315'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 24525 genes × 33 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "2432e69a",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "f59b41a2",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:42.985047Z",
"iopub.status.busy": "2025-03-25T06:28:42.984927Z",
"iopub.status.idle": "2025-03-25T06:28:42.986743Z",
"shell.execute_reply": "2025-03-25T06:28:42.986465Z"
}
},
"outputs": [],
"source": [
"# The identifiers starting with \"ILMN_\" are Illumina probe IDs, not human gene symbols\n",
"# These are microarray probe identifiers from Illumina's BeadArray technology\n",
"# They need to be mapped to human gene symbols for biological interpretation\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "7d442aa2",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8b159250",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:42.987930Z",
"iopub.status.busy": "2025-03-25T06:28:42.987827Z",
"iopub.status.idle": "2025-03-25T06:28:44.715592Z",
"shell.execute_reply": "2025-03-25T06:28:44.715197Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1722532', 'ILMN_1708805', 'ILMN_1672526', 'ILMN_1703284', 'ILMN_2185604'], 'Species': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Source': ['RefSeq', 'RefSeq', 'RefSeq', 'RefSeq', 'RefSeq'], 'Search_Key': ['ILMN_25544', 'ILMN_10519', 'ILMN_17234', 'ILMN_502', 'ILMN_19244'], 'Transcript': ['ILMN_25544', 'ILMN_10519', 'ILMN_17234', 'ILMN_502', 'ILMN_19244'], 'ILMN_Gene': ['JMJD1A', 'NCOA3', 'LOC389834', 'SPIRE2', 'C17ORF77'], 'Source_Reference_ID': ['NM_018433.3', 'NM_006534.2', 'NM_001013655.1', 'NM_032451.1', 'NM_152460.2'], 'RefSeq_ID': ['NM_018433.3', 'NM_006534.2', 'NM_001013655.1', 'NM_032451.1', 'NM_152460.2'], 'Entrez_Gene_ID': [55818.0, 8202.0, 389834.0, 84501.0, 146723.0], 'GI': [46358420.0, 32307123.0, 61966764.0, 55749599.0, 48255961.0], 'Accession': ['NM_018433.3', 'NM_006534.2', 'NM_001013655.1', 'NM_032451.1', 'NM_152460.2'], 'Symbol': ['JMJD1A', 'NCOA3', 'LOC389834', 'SPIRE2', 'C17orf77'], 'Protein_Product': ['NP_060903.2', 'NP_006525.2', 'NP_001013677.1', 'NP_115827.1', 'NP_689673.2'], 'Array_Address_Id': [1240504.0, 2760390.0, 1740239.0, 6040014.0, 6550343.0], 'Probe_Type': ['S', 'A', 'S', 'S', 'S'], 'Probe_Start': [4359.0, 7834.0, 3938.0, 3080.0, 2372.0], 'SEQUENCE': ['CCAGGCTGTAAAAGCAAAACCTCGTATCAGCTCTGGAACAATACCTGCAG', 'CCACATGAAATGACTTATGGGGGATGGTGAGCTGTGACTGCTTTGCTGAC', 'CCATTGGTTCTGTTTGGCATAACCCTATTAAATGGTGCGCAGAGCTGAAT', 'ACATGTGTCCTGCCTCTCCTGGCCCTACCACATTCTGGTGCTGTCCTCAC', 'CTGCTCCAGTGAAGGGTGCACCAAAATCTCAGAAGTCACTGCTAAAGACC'], 'Chromosome': ['2', '20', '4', '16', '17'], 'Probe_Chr_Orientation': ['+', '+', '-', '+', '+'], 'Probe_Coordinates': ['86572991-86573040', '45718934-45718983', '51062-51111', '88465064-88465113', '70101790-70101839'], 'Cytoband': ['2p11.2e', '20q13.12c', nan, '16q24.3b', '17q25.1b'], 'Definition': ['Homo sapiens jumonji domain containing 1A (JMJD1A), mRNA.', 'Homo sapiens nuclear receptor coactivator 3 (NCOA3), transcript variant 2, mRNA.', 'Homo sapiens hypothetical gene supported by AK123403 (LOC389834), mRNA.', 'Homo sapiens spire homolog 2 (Drosophila) (SPIRE2), mRNA.', 'Homo sapiens chromosome 17 open reading frame 77 (C17orf77), mRNA.'], 'Ontology_Component': ['nucleus [goid 5634] [evidence IEA]', 'nucleus [goid 5634] [pmid 9267036] [evidence NAS]', nan, nan, nan], 'Ontology_Process': ['chromatin modification [goid 16568] [evidence IEA]; transcription [goid 6350] [evidence IEA]; regulation of transcription, DNA-dependent [goid 6355] [evidence IEA]', 'positive regulation of transcription, DNA-dependent [goid 45893] [pmid 15572661] [evidence NAS]; androgen receptor signaling pathway [goid 30521] [pmid 15572661] [evidence NAS]; signal transduction [goid 7165] [evidence IEA]', nan, nan, nan], 'Ontology_Function': ['oxidoreductase activity [goid 16491] [evidence IEA]; oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen [goid 16702] [evidence IEA]; zinc ion binding [goid 8270] [evidence IEA]; metal ion binding [goid 46872] [evidence IEA]; iron ion binding [goid 5506] [evidence IEA]', 'acyltransferase activity [goid 8415] [evidence IEA]; thyroid hormone receptor binding [goid 46966] [pmid 9346901] [evidence NAS]; transferase activity [goid 16740] [evidence IEA]; transcription coactivator activity [goid 3713] [pmid 15572661] [evidence NAS]; androgen receptor binding [goid 50681] [pmid 15572661] [evidence NAS]; histone acetyltransferase activity [goid 4402] [pmid 9267036] [evidence TAS]; signal transducer activity [goid 4871] [evidence IEA]; transcription regulator activity [goid 30528] [evidence IEA]; protein binding [goid 5515] [pmid 15698540] [evidence IPI]', nan, 'zinc ion binding [goid 8270] [evidence IEA]', nan], 'Synonyms': ['JHMD2A; JMJD1; TSGA; KIAA0742; DKFZp686A24246; DKFZp686P07111', 'CAGH16; TNRC14; pCIP; ACTR; MGC141848; CTG26; AIB-1; TRAM-1; TNRC16; AIB1; SRC3; SRC-1; RAC3', nan, 'MGC117166; Spir-2', 'FLJ31882'], 'GB_ACC': ['NM_018433.3', 'NM_006534.2', 'NM_001013655.1', 'NM_032451.1', 'NM_152460.2']}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "46cdd07c",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "5a9013bd",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:44.717008Z",
"iopub.status.busy": "2025-03-25T06:28:44.716873Z",
"iopub.status.idle": "2025-03-25T06:28:44.827400Z",
"shell.execute_reply": "2025-03-25T06:28:44.827017Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping preview (first 5 rows):\n",
" ID Gene\n",
"0 ILMN_1722532 JMJD1A\n",
"1 ILMN_1708805 NCOA3\n",
"2 ILMN_1672526 LOC389834\n",
"3 ILMN_1703284 SPIRE2\n",
"4 ILMN_2185604 C17orf77\n",
"\n",
"Converted gene expression data dimensions: 17824 genes × 33 samples\n",
"\n",
"First 10 gene symbols:\n",
"Index(['A1BG', 'A2BP1', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1',\n",
" 'AAAS', 'AACS'],\n",
" dtype='object', name='Gene')\n"
]
}
],
"source": [
"# 1. Identify the columns for probe IDs and gene symbols\n",
"# From the annotation preview, we can see:\n",
"# - 'ID' column contains the Illumina probe IDs matching the gene expression data index\n",
"# - 'Symbol' column contains the corresponding gene symbols\n",
"\n",
"# 2. Get the gene mapping dataframe using the get_gene_mapping function\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"\n",
"# Print a preview of the mapping\n",
"print(\"Gene mapping preview (first 5 rows):\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print information about the resulting gene expression data\n",
"print(f\"\\nConverted gene expression data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(\"\\nFirst 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n"
]
},
{
"cell_type": "markdown",
"id": "ee5ee48d",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f64d8077",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:28:44.828773Z",
"iopub.status.busy": "2025-03-25T06:28:44.828653Z",
"iopub.status.idle": "2025-03-25T06:28:51.576480Z",
"shell.execute_reply": "2025-03-25T06:28:51.575887Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape after normalization: (16856, 33)\n",
"First 5 gene symbols after normalization: Index(['A1BG', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT'], dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Amyotrophic_Lateral_Sclerosis/gene_data/GSE61322.csv\n",
"Sample IDs in clinical data:\n",
"Index(['!Sample_geo_accession', 'GSM1502059', 'GSM1502060', 'GSM1502061',\n",
" 'GSM1502062'],\n",
" dtype='object') ...\n",
"Sample IDs in gene expression data:\n",
"Index(['GSM1502059', 'GSM1502060', 'GSM1502061', 'GSM1502062', 'GSM1502063'], dtype='object') ...\n",
"Clinical data shape: (1, 33)\n",
"Clinical data preview: {'GSM1502059': [0.0], 'GSM1502060': [0.0], 'GSM1502061': [0.0], 'GSM1502062': [1.0], 'GSM1502063': [0.0], 'GSM1502064': [1.0], 'GSM1502065': [1.0], 'GSM1502066': [1.0], 'GSM1502067': [1.0], 'GSM1502068': [0.0], 'GSM1502069': [1.0], 'GSM1502070': [1.0], 'GSM1502071': [1.0], 'GSM1502072': [0.0], 'GSM1502073': [1.0], 'GSM1502074': [0.0], 'GSM1502075': [1.0], 'GSM1502076': [0.0], 'GSM1502077': [1.0], 'GSM1502078': [1.0], 'GSM1502079': [0.0], 'GSM1502080': [0.0], 'GSM1502081': [0.0], 'GSM1502082': [0.0], 'GSM1502083': [0.0], 'GSM1502084': [0.0], 'GSM1502085': [0.0], 'GSM1502086': [0.0], 'GSM1502087': [1.0], 'GSM1502088': [1.0], 'GSM1502089': [0.0], 'GSM1502090': [1.0], 'GSM1502091': [0.0]}\n",
"Clinical data saved to ../../output/preprocess/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE61322.csv\n",
"Linked data shape before handling missing values: (33, 16857)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (33, 16857)\n",
"For the feature 'Amyotrophic_Lateral_Sclerosis', the least common label is '1.0' with 15 occurrences. This represents 45.45% of the dataset.\n",
"The distribution of the feature 'Amyotrophic_Lateral_Sclerosis' in this dataset is fine.\n",
"\n",
"Data shape after removing biased features: (33, 16857)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Amyotrophic_Lateral_Sclerosis/GSE61322.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the index of gene expression data\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"First 5 gene symbols after normalization: {normalized_gene_data.index[:5]}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Check if clinical data was properly loaded\n",
"# First, reload the clinical_data to make sure we're using the original data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file)\n",
"\n",
"# Print the sample IDs to understand the data structure\n",
"print(\"Sample IDs in clinical data:\")\n",
"print(clinical_data.columns[:5], \"...\") # Show first 5 sample IDs\n",
"\n",
"# Print the sample IDs in gene expression data\n",
"print(\"Sample IDs in gene expression data:\")\n",
"print(normalized_gene_data.columns[:5], \"...\") # Show first 5 sample IDs\n",
"\n",
"# Extract clinical features using the actual sample IDs\n",
"is_trait_available = trait_row is not None\n",
"linked_data = None\n",
"\n",
"if is_trait_available:\n",
" # Extract clinical features with proper sample IDs\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age if age_row is not None else None,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender if gender_row is not None else None\n",
" )\n",
" \n",
" print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
" print(f\"Clinical data preview: {preview_df(selected_clinical_df, n=3)}\")\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" \n",
" # Link clinical and genetic data\n",
" # Make sure both dataframes have compatible indices/columns\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
" print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
" \n",
" if linked_data.shape[0] == 0:\n",
" print(\"WARNING: No samples matched between clinical and genetic data!\")\n",
" # Create a sample dataset for demonstration\n",
" print(\"Using gene data with artificial trait values for demonstration\")\n",
" is_trait_available = False\n",
" is_biased = True\n",
" linked_data = pd.DataFrame(index=normalized_gene_data.columns)\n",
" linked_data[trait] = 1 # Placeholder\n",
" else:\n",
" # 3. Handle missing values\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # 4. Determine if trait and demographic features are biased\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" print(f\"Data shape after removing biased features: {linked_data.shape}\")\n",
"else:\n",
" print(\"Trait data was determined to be unavailable in previous steps.\")\n",
" is_biased = True # Set to True since we can't evaluate without trait data\n",
" linked_data = pd.DataFrame(index=normalized_gene_data.columns)\n",
" linked_data[trait] = 1 # Add a placeholder trait column\n",
" print(f\"Using placeholder data due to missing trait information, shape: {linked_data.shape}\")\n",
"\n",
"# 5. Validate and save cohort info\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data from multiple sclerosis patients, but there were issues linking clinical and genetic data.\"\n",
")\n",
"\n",
"# 6. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset deemed not usable for associational studies.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|