File size: 26,017 Bytes
736e4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "43ecd915",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:29.950669Z",
"iopub.status.busy": "2025-03-25T06:30:29.950419Z",
"iopub.status.idle": "2025-03-25T06:30:30.120173Z",
"shell.execute_reply": "2025-03-25T06:30:30.119711Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Ankylosing_Spondylitis\"\n",
"cohort = \"GSE73754\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Ankylosing_Spondylitis\"\n",
"in_cohort_dir = \"../../input/GEO/Ankylosing_Spondylitis/GSE73754\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/GSE73754.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/gene_data/GSE73754.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/clinical_data/GSE73754.csv\"\n",
"json_path = \"../../output/preprocess/Ankylosing_Spondylitis/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "ae914a4a",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "0dc1198a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:30.121409Z",
"iopub.status.busy": "2025-03-25T06:30:30.121262Z",
"iopub.status.idle": "2025-03-25T06:30:30.312129Z",
"shell.execute_reply": "2025-03-25T06:30:30.311643Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Sexual Dimorphism in the Th17 Signature of Ankylosing Spondylitis\"\n",
"!Series_summary\t\"Male AS patients have an elevated Th17 cell frequency vs. female AS patients (Gracey et al, Arthritis and Rheumatology, 2015). This analysis was performed to further examine differences between male and female AS patients\"\n",
"!Series_overall_design\t\"AS patients were compared to healthy controls (HC). For sex-specific anaylsis, three groups were compared: F-HC vs. M-HC, M-AS vs. M-HC and F-AS vs. F-HC. A one way ANOVA was performed to identify genes differentially regulated in male and female AS patients\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['Sex: Male', 'Sex: Female'], 1: ['age (yr): 53', 'age (yr): 26', 'age (yr): 29', 'age (yr): 50', 'age (yr): 35', 'age (yr): 48', 'age (yr): 18', 'age (yr): 39', 'age (yr): 49', 'age (yr): 43', 'age (yr): 59', 'age (yr): 51', 'age (yr): 45', 'age (yr): 52', 'age (yr): 77', 'age (yr): 34', 'age (yr): 31', 'age (yr): 23', 'age (yr): 46', 'age (yr): 40', 'age (yr): 55', 'age (yr): 54', 'age (yr): 41', 'age (yr): 38', 'age (yr): 21', 'age (yr): 47', 'age (yr): 60', 'age (yr): 27', 'age (yr): 37', 'age (yr): 28'], 2: ['hla-b27 (1=positive, 0=negative): 1', 'hla-b27 (1=positive, 0=negative): 0', 'hla-b27 (1=positive, 0=negative): unknown'], 3: ['disease: Ankylosing Spondylitis', 'disease: healthy control']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "8f024619",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "0071dc68",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:30.313996Z",
"iopub.status.busy": "2025-03-25T06:30:30.313874Z",
"iopub.status.idle": "2025-03-25T06:30:30.319453Z",
"shell.execute_reply": "2025-03-25T06:30:30.318989Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Initial validation for GSE73754 completed.\n",
"Gene expression data available: True\n",
"Trait data available: True\n",
"Trait conversion function and row identifier have been prepared.\n",
"Age conversion function and row identifier have been prepared.\n",
"Gender conversion function and row identifier have been prepared.\n",
"To extract clinical features, the original clinical_data.csv file would be needed.\n"
]
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"from typing import Dict, Any, Optional, Callable\n",
"import json\n",
"\n",
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this appears to be a gene expression study\n",
"# comparing AS patients to healthy controls with a focus on sexual dimorphism\n",
"is_gene_available = True\n",
"\n",
"# 2.1 Data Availability\n",
"# Trait information is in row 3 'disease: Ankylosing Spondylitis' or 'disease: healthy control'\n",
"trait_row = 3\n",
"\n",
"# Age information is in row 1 'age (yr): XX'\n",
"age_row = 1\n",
"\n",
"# Gender information is in row 0 'Sex: Male' or 'Sex: Female'\n",
"gender_row = 0\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(value):\n",
" \"\"\"Convert trait value to binary (1 for AS, 0 for healthy control)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" value = value.split(':', 1)[1].strip() if ':' in value else value.strip()\n",
" if 'ankylosing spondylitis' in value.lower():\n",
" return 1\n",
" elif 'healthy control' in value.lower():\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age value to continuous\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" value = value.split(':', 1)[1].strip() if ':' in value else value.strip()\n",
" try:\n",
" return float(value)\n",
" except ValueError:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender value to binary (0 for female, 1 for male)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" value = value.split(':', 1)[1].strip() if ':' in value else value.strip()\n",
" if 'female' in value.lower():\n",
" return 0\n",
" elif 'male' in value.lower():\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Determine trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Conduct initial filtering and save metadata\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction - Note that we don't have the actual clinical data\n",
"# We can only proceed with initial validation at this stage\n",
"print(f\"Initial validation for {cohort} completed.\")\n",
"print(f\"Gene expression data available: {is_gene_available}\")\n",
"print(f\"Trait data available: {is_trait_available}\")\n",
"print(f\"Trait conversion function and row identifier have been prepared.\")\n",
"print(f\"Age conversion function and row identifier have been prepared.\")\n",
"print(f\"Gender conversion function and row identifier have been prepared.\")\n",
"print(f\"To extract clinical features, the original clinical_data.csv file would be needed.\")\n"
]
},
{
"cell_type": "markdown",
"id": "066cddda",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "26364c5a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:30.321189Z",
"iopub.status.busy": "2025-03-25T06:30:30.321075Z",
"iopub.status.idle": "2025-03-25T06:30:30.638038Z",
"shell.execute_reply": "2025-03-25T06:30:30.637377Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
" 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
" 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
" 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 47323 genes × 72 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "b6c9bcc9",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "4e1ce941",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:30.639777Z",
"iopub.status.busy": "2025-03-25T06:30:30.639658Z",
"iopub.status.idle": "2025-03-25T06:30:30.641925Z",
"shell.execute_reply": "2025-03-25T06:30:30.641486Z"
}
},
"outputs": [],
"source": [
"# These are Illumina probe identifiers (ILMN_), not human gene symbols\n",
"# They need to be mapped to gene symbols for proper gene expression analysis\n",
"# ILMN_ prefixes indicate Illumina BeadArray platform probe IDs\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "33c54ac7",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "d4c95ed9",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:30.643599Z",
"iopub.status.busy": "2025-03-25T06:30:30.643491Z",
"iopub.status.idle": "2025-03-25T06:30:37.642966Z",
"shell.execute_reply": "2025-03-25T06:30:37.642300Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "f3deb068",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "7e566264",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:37.644925Z",
"iopub.status.busy": "2025-03-25T06:30:37.644793Z",
"iopub.status.idle": "2025-03-25T06:30:38.786946Z",
"shell.execute_reply": "2025-03-25T06:30:38.786303Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"After mapping to gene symbols:\n",
"Gene data dimensions: 21464 genes × 72 samples\n",
"First 10 gene symbols:\n",
"Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
" 'A4GALT', 'A4GNT'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Processed gene expression data saved to ../../output/preprocess/Ankylosing_Spondylitis/gene_data/GSE73754.csv\n"
]
}
],
"source": [
"# 1. Identify the correct columns for mapping from the gene annotation data\n",
"# ID column contains the probe IDs that match with gene_data indices\n",
"# Symbol column contains the gene symbols we want to map to\n",
"\n",
"# 2. Get gene mapping using the appropriate columns from gene annotation\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Preview the mapped gene expression data\n",
"print(\"\\nAfter mapping to gene symbols:\")\n",
"print(f\"Gene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(\"First 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Save the processed gene data to file\n",
"# Create directory if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"\\nProcessed gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "47ffac9d",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "67c53510",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:30:38.789111Z",
"iopub.status.busy": "2025-03-25T06:30:38.788982Z",
"iopub.status.idle": "2025-03-25T06:30:51.522836Z",
"shell.execute_reply": "2025-03-25T06:30:51.522163Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols in the gene expression data...\n",
"Original gene data shape: 21464 genes × 72 samples\n",
"Normalized gene data shape: 20259 genes × 72 samples\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene expression data saved to ../../output/preprocess/Ankylosing_Spondylitis/gene_data/GSE73754.csv\n",
"Extracting clinical features from original clinical data...\n",
"Clinical features saved to ../../output/preprocess/Ankylosing_Spondylitis/clinical_data/GSE73754.csv\n",
"Clinical features preview:\n",
"{'GSM1902130': [1.0, 53.0, 1.0], 'GSM1902131': [1.0, 26.0, 1.0], 'GSM1902132': [1.0, 29.0, 1.0], 'GSM1902133': [1.0, 50.0, 1.0], 'GSM1902134': [1.0, 35.0, 1.0], 'GSM1902135': [1.0, 48.0, 1.0], 'GSM1902136': [1.0, 18.0, 1.0], 'GSM1902137': [1.0, 39.0, 1.0], 'GSM1902138': [1.0, 49.0, 1.0], 'GSM1902139': [1.0, 43.0, 1.0], 'GSM1902140': [1.0, 43.0, 1.0], 'GSM1902141': [1.0, 18.0, 1.0], 'GSM1902142': [1.0, 59.0, 1.0], 'GSM1902143': [1.0, 51.0, 1.0], 'GSM1902144': [1.0, 18.0, 1.0], 'GSM1902145': [1.0, 45.0, 1.0], 'GSM1902146': [1.0, 52.0, 1.0], 'GSM1902147': [1.0, 77.0, 1.0], 'GSM1902148': [1.0, 34.0, 1.0], 'GSM1902149': [1.0, 31.0, 1.0], 'GSM1902150': [1.0, 51.0, 1.0], 'GSM1902151': [1.0, 23.0, 1.0], 'GSM1902152': [1.0, 52.0, 0.0], 'GSM1902153': [1.0, 46.0, 0.0], 'GSM1902154': [1.0, 40.0, 0.0], 'GSM1902155': [1.0, 55.0, 1.0], 'GSM1902156': [1.0, 54.0, 0.0], 'GSM1902157': [1.0, 41.0, 0.0], 'GSM1902158': [1.0, 38.0, 0.0], 'GSM1902159': [1.0, 45.0, 0.0], 'GSM1902160': [1.0, 52.0, 0.0], 'GSM1902161': [1.0, 43.0, 0.0], 'GSM1902162': [1.0, 41.0, 0.0], 'GSM1902163': [1.0, 21.0, 0.0], 'GSM1902164': [1.0, 47.0, 0.0], 'GSM1902165': [1.0, 60.0, 0.0], 'GSM1902166': [1.0, 46.0, 0.0], 'GSM1902167': [1.0, 27.0, 0.0], 'GSM1902168': [1.0, 37.0, 0.0], 'GSM1902169': [1.0, 28.0, 0.0], 'GSM1902170': [1.0, 37.0, 0.0], 'GSM1902171': [1.0, 48.0, 0.0], 'GSM1902172': [1.0, 41.0, 0.0], 'GSM1902173': [1.0, 53.0, 0.0], 'GSM1902174': [1.0, 39.0, 0.0], 'GSM1902175': [1.0, 18.0, 0.0], 'GSM1902176': [1.0, 50.0, 0.0], 'GSM1902177': [1.0, 22.0, 1.0], 'GSM1902178': [1.0, 48.0, 1.0], 'GSM1902179': [1.0, 57.0, 1.0], 'GSM1902180': [1.0, 23.0, 1.0], 'GSM1902181': [1.0, 56.0, 0.0], 'GSM1902182': [0.0, 28.0, 1.0], 'GSM1902183': [0.0, 26.0, 1.0], 'GSM1902184': [0.0, 65.0, 1.0], 'GSM1902185': [0.0, 41.0, 1.0], 'GSM1902186': [0.0, 32.0, 1.0], 'GSM1902187': [0.0, 56.0, 1.0], 'GSM1902188': [0.0, 47.0, 1.0], 'GSM1902189': [0.0, 71.0, 1.0], 'GSM1902190': [0.0, 24.0, 1.0], 'GSM1902191': [0.0, 24.0, 1.0], 'GSM1902192': [0.0, 27.0, 0.0], 'GSM1902193': [0.0, 37.0, 0.0], 'GSM1902194': [0.0, 42.0, 0.0], 'GSM1902195': [0.0, 63.0, 0.0], 'GSM1902196': [0.0, 61.0, 0.0], 'GSM1902197': [0.0, 20.0, 0.0], 'GSM1902198': [0.0, 31.0, 0.0], 'GSM1902199': [0.0, 25.0, 0.0], 'GSM1902200': [0.0, 29.0, 0.0], 'GSM1902201': [0.0, 65.0, 0.0]}\n",
"Linking clinical and genetic data...\n",
"Linked data shape: (72, 20262)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (72, 20262)\n",
"\n",
"Checking for bias in feature variables:\n",
"For the feature 'Ankylosing_Spondylitis', the least common label is '0.0' with 20 occurrences. This represents 27.78% of the dataset.\n",
"The distribution of the feature 'Ankylosing_Spondylitis' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 28.75\n",
" 50% (Median): 41.5\n",
" 75%: 51.25\n",
"Min: 18.0\n",
"Max: 77.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 35 occurrences. This represents 48.61% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Ankylosing_Spondylitis/GSE73754.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols in the gene expression data...\")\n",
"# From the previous step output, we can see the data already contains gene symbols\n",
"# like 'A1BG', 'A1CF', 'A2M' which need to be normalized\n",
"gene_data_normalized = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Original gene data shape: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"print(f\"Normalized gene data shape: {gene_data_normalized.shape[0]} genes × {gene_data_normalized.shape[1]} samples\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data_normalized.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene expression data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Extract clinical features from scratch instead of loading the empty file\n",
"print(\"Extracting clinical features from original clinical data...\")\n",
"clinical_features = geo_select_clinical_features(\n",
" clinical_data, \n",
" trait, \n",
" trait_row,\n",
" convert_trait,\n",
" age_row,\n",
" convert_age,\n",
" gender_row,\n",
" convert_gender\n",
")\n",
"\n",
"# Save the extracted clinical features\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"clinical_features.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical features saved to {out_clinical_data_file}\")\n",
"\n",
"print(\"Clinical features preview:\")\n",
"print(preview_df(clinical_features))\n",
"\n",
"# Check if clinical features were successfully extracted\n",
"if clinical_features.empty:\n",
" print(\"Failed to extract clinical features. Dataset cannot be processed further.\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=False,\n",
" is_biased=True,\n",
" df=pd.DataFrame(),\n",
" note=\"Clinical features could not be extracted from the dataset.\"\n",
" )\n",
" print(\"Dataset deemed not usable due to lack of clinical features.\")\n",
"else:\n",
" # 2. Link clinical and genetic data\n",
" print(\"Linking clinical and genetic data...\")\n",
" linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data_normalized)\n",
" print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
" # 3. Handle missing values systematically\n",
" linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
" print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
" # 4. Check if the dataset is biased\n",
" print(\"\\nChecking for bias in feature variables:\")\n",
" is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
" # 5. Conduct final quality validation\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=True,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains gene expression data for aniridia patients and healthy controls.\"\n",
" )\n",
"\n",
" # 6. Save linked data if usable\n",
" if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
" else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|