File size: 6,592 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "f88252d5",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:30:52.473153Z",
     "iopub.status.busy": "2025-03-25T06:30:52.473042Z",
     "iopub.status.idle": "2025-03-25T06:30:52.637314Z",
     "shell.execute_reply": "2025-03-25T06:30:52.636933Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Ankylosing_Spondylitis\"\n",
    "\n",
    "# Input paths\n",
    "tcga_root_dir = \"../../input/TCGA\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/TCGA.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/gene_data/TCGA.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Ankylosing_Spondylitis/clinical_data/TCGA.csv\"\n",
    "json_path = \"../../output/preprocess/Ankylosing_Spondylitis/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9eed7bbf",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "1de2aba3",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:30:52.638801Z",
     "iopub.status.busy": "2025-03-25T06:30:52.638653Z",
     "iopub.status.idle": "2025-03-25T06:30:52.643620Z",
     "shell.execute_reply": "2025-03-25T06:30:52.643301Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Available TCGA subdirectories: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n",
      "Potential Ankylosing_Spondylitis-related directories found: []\n",
      "No TCGA subdirectory contains terms directly related to Ankylosing_Spondylitis.\n",
      "TCGA is primarily a cancer genomics database and may not have specific data for this inflammatory condition.\n",
      "Task completed: Ankylosing_Spondylitis data not available in TCGA dataset.\n"
     ]
    }
   ],
   "source": [
    "import os\n",
    "\n",
    "# Step 1: Look for directories related to Ankylosing Spondylitis (inflammatory arthritis affecting the spine)\n",
    "tcga_subdirs = os.listdir(tcga_root_dir)\n",
    "print(f\"Available TCGA subdirectories: {tcga_subdirs}\")\n",
    "\n",
    "# Check if any directories contain relevant terms to Ankylosing Spondylitis\n",
    "as_related_terms = [\"spondylitis\", \"arthritis\", \"inflammatory\", \"spine\", \"joint\", \"sacroiliac\", \"rheumatic\"]\n",
    "potential_dirs = []\n",
    "\n",
    "for directory in tcga_subdirs:\n",
    "    if any(term.lower() in directory.lower() for term in as_related_terms):\n",
    "        potential_dirs.append(directory)\n",
    "\n",
    "print(f\"Potential {trait}-related directories found: {potential_dirs}\")\n",
    "\n",
    "if potential_dirs:\n",
    "    # Select the most specific match if found\n",
    "    target_dir = potential_dirs[0]\n",
    "    target_path = os.path.join(tcga_root_dir, target_dir)\n",
    "    \n",
    "    print(f\"Selected directory: {target_dir}\")\n",
    "    \n",
    "    # Get the clinical and genetic data file paths\n",
    "    clinical_path, genetic_path = tcga_get_relevant_filepaths(target_path)\n",
    "    \n",
    "    # Load the datasets\n",
    "    clinical_df = pd.read_csv(clinical_path, sep='\\t', index_col=0)\n",
    "    genetic_df = pd.read_csv(genetic_path, sep='\\t', index_col=0)\n",
    "    \n",
    "    # Print column names of clinical data\n",
    "    print(\"\\nClinical data columns:\")\n",
    "    print(clinical_df.columns.tolist())\n",
    "    \n",
    "    # Check if we have both gene data and potential trait data\n",
    "    has_gene_data = not genetic_df.empty\n",
    "    has_potential_trait_data = not clinical_df.empty\n",
    "    \n",
    "    # Record our initial assessment\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False, \n",
    "        cohort=\"TCGA\", \n",
    "        info_path=json_path, \n",
    "        is_gene_available=has_gene_data, \n",
    "        is_trait_available=has_potential_trait_data\n",
    "    )\n",
    "else:\n",
    "    print(f\"No TCGA subdirectory contains terms directly related to {trait}.\")\n",
    "    print(\"TCGA is primarily a cancer genomics database and may not have specific data for this inflammatory condition.\")\n",
    "    \n",
    "    # Marking the trait as unavailable in the cohort_info.json\n",
    "    validate_and_save_cohort_info(\n",
    "        is_final=False, \n",
    "        cohort=\"TCGA\", \n",
    "        info_path=json_path, \n",
    "        is_gene_available=False, \n",
    "        is_trait_available=False\n",
    "    )\n",
    "    \n",
    "    print(f\"Task completed: {trait} data not available in TCGA dataset.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}