File size: 26,315 Bytes
736e4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "49f5c632",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:21.108218Z",
"iopub.status.busy": "2025-03-25T06:31:21.107972Z",
"iopub.status.idle": "2025-03-25T06:31:21.279168Z",
"shell.execute_reply": "2025-03-25T06:31:21.278771Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Anxiety_disorder\"\n",
"cohort = \"GSE119995\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n",
"in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE119995\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE119995.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE119995.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE119995.csv\"\n",
"json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "d5cdf12d",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "2ea14f00",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:21.280441Z",
"iopub.status.busy": "2025-03-25T06:31:21.280287Z",
"iopub.status.idle": "2025-03-25T06:31:21.579574Z",
"shell.execute_reply": "2025-03-25T06:31:21.578981Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Exposure-induced changes of plasma mRNA expression levels in patients with panic disorder\"\n",
"!Series_summary\t\"Anxiety disorders including panic disorders with or without agoraphobia are the most prevalent mental disorders. Exposure is a core technique within the framework of cognitive behavioral therapy to treat phobia- and anxiety-related symptoms. The primary aim of this study was to trace specific anxiety-related plasma gene expression changes of subjects with PD at three time points in order to identify biomarkers for acute anxiety states. In this intervention, the patient is exposed to highly feared and mostly avoided situations.\"\n",
"!Series_overall_design\t\"Blood samples from individuals with panic disorder (n=24) were drawn at three time points during exposure: baseline, 1 hour post-exposure and 24 hours after exposure-onset.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease: panic disorder'], 1: ['tissue: blood plasma'], 2: ['Sex: female', 'Sex: male', 'Sex: not determined'], 3: ['medication: 0', 'medication: 1'], 4: ['timepoint: b1', 'timepoint: p24_1', 'timepoint: pe1'], 5: ['individual: 2', 'individual: 9', 'individual: 7', 'individual: 22', 'individual: 6', 'individual: 10', 'individual: 15', 'individual: 12', 'individual: 18', 'individual: 13', 'individual: 26', 'individual: 19', 'individual: 20', 'individual: 24', 'individual: 14', 'individual: 27', 'individual: 29', 'individual: 33', 'individual: 34', 'individual: 31', 'individual: 38', 'individual: 21', 'individual: 39', 'individual: 41']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "09bba9f8",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "612c0ca1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:21.581460Z",
"iopub.status.busy": "2025-03-25T06:31:21.581314Z",
"iopub.status.idle": "2025-03-25T06:31:21.592612Z",
"shell.execute_reply": "2025-03-25T06:31:21.592135Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{0: [0.0, 0.0], 1: [1.0, 1.0], 2: [1.0, nan], 3: [nan, nan], 4: [nan, nan], 5: [nan, nan], 6: [nan, nan], 7: [nan, nan], 8: [nan, nan], 9: [nan, nan], 10: [nan, nan], 11: [nan, nan], 12: [nan, nan], 13: [nan, nan], 14: [nan, nan], 15: [nan, nan], 16: [nan, nan], 17: [nan, nan], 18: [nan, nan], 19: [nan, nan], 20: [nan, nan], 21: [nan, nan], 22: [nan, nan], 23: [nan, nan]}\n",
"Clinical data saved to ../../output/preprocess/Anxiety_disorder/clinical_data/GSE119995.csv\n"
]
}
],
"source": [
"# 1. Determine gene expression data availability\n",
"# From the background information, this appears to be a study on plasma mRNA expression\n",
"# which means it contains gene expression data\n",
"is_gene_available = True\n",
"\n",
"# 2.1 Data Availability\n",
"\n",
"# Trait (Anxiety disorder)\n",
"# All subjects have panic disorder (row 0), but this is a constant feature\n",
"# The timepoint (row 4) provides information about anxiety levels during exposure\n",
"# which can be used as a proxy for anxiety severity\n",
"trait_row = 4\n",
"\n",
"# Age \n",
"# Age information is not available in the sample characteristics\n",
"age_row = None\n",
"\n",
"# Gender\n",
"# Gender information is available in row 2 (Sex)\n",
"gender_row = 2\n",
"\n",
"# 2.2 Data Type Conversion\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert timepoint to a binary trait for anxiety severity\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Handle non-string values\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Baseline (b1) represents pre-exposure (0)\n",
" # Other timepoints (p24_1, pe1) represent post-exposure (1)\n",
" if value == \"b1\":\n",
" return 0 # baseline/pre-exposure\n",
" elif value in [\"p24_1\", \"pe1\"]:\n",
" return 1 # post-exposure (higher anxiety)\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age to continuous value\"\"\"\n",
" # Age is not available\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to binary value\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Handle non-string values\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # female=0, male=1\n",
" if value.lower() == \"female\":\n",
" return 0\n",
" elif value.lower() == \"male\":\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Check trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Initial filtering on usability\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # We need to create a DataFrame that mimics the structure expected by geo_select_clinical_features\n",
" # The sample characteristics dictionary shows the rows with their values\n",
" sample_char_dict = {\n",
" 0: ['disease: panic disorder'], \n",
" 1: ['tissue: blood plasma'], \n",
" 2: ['Sex: female', 'Sex: male', 'Sex: not determined'], \n",
" 3: ['medication: 0', 'medication: 1'], \n",
" 4: ['timepoint: b1', 'timepoint: p24_1', 'timepoint: pe1'], \n",
" 5: ['individual: 2', 'individual: 9', 'individual: 7', 'individual: 22', 'individual: 6', \n",
" 'individual: 10', 'individual: 15', 'individual: 12', 'individual: 18', 'individual: 13', \n",
" 'individual: 26', 'individual: 19', 'individual: 20', 'individual: 24', 'individual: 14', \n",
" 'individual: 27', 'individual: 29', 'individual: 33', 'individual: 34', 'individual: 31', \n",
" 'individual: 38', 'individual: 21', 'individual: 39', 'individual: 41']\n",
" }\n",
" \n",
" # Convert to DataFrame with strings, not integers\n",
" clinical_data = pd.DataFrame.from_dict(sample_char_dict, orient='index')\n",
" \n",
" # Extract clinical features\n",
" clinical_data_selected = geo_select_clinical_features(\n",
" clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted features\n",
" preview_result = preview_df(clinical_data_selected)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview_result)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" clinical_data_selected.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "1482c64d",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "248a3298",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:21.594411Z",
"iopub.status.busy": "2025-03-25T06:31:21.594293Z",
"iopub.status.idle": "2025-03-25T06:31:22.080860Z",
"shell.execute_reply": "2025-03-25T06:31:22.080226Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
" 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
" 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
" 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 47290 genes × 72 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "f80d57f4",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "55e922eb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:22.082656Z",
"iopub.status.busy": "2025-03-25T06:31:22.082532Z",
"iopub.status.idle": "2025-03-25T06:31:22.084903Z",
"shell.execute_reply": "2025-03-25T06:31:22.084471Z"
}
},
"outputs": [],
"source": [
"# Analyzing the gene identifiers\n",
"# The gene identifiers start with \"ILMN_\" which indicates they are Illumina probe IDs\n",
"# These are not standard human gene symbols and need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "4b2879c8",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "204a52bc",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:22.086343Z",
"iopub.status.busy": "2025-03-25T06:31:22.086233Z",
"iopub.status.idle": "2025-03-25T06:31:30.858479Z",
"shell.execute_reply": "2025-03-25T06:31:30.857835Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "7c77f44b",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "88c71780",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:30.860354Z",
"iopub.status.busy": "2025-03-25T06:31:30.860208Z",
"iopub.status.idle": "2025-03-25T06:31:31.148658Z",
"shell.execute_reply": "2025-03-25T06:31:31.148010Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Mapped 44837 probes to gene symbols\n",
"Resulted in 21458 unique genes\n",
"First 10 gene symbols:\n",
"Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
" 'A4GALT', 'A4GNT'],\n",
" dtype='object', name='Gene')\n",
"Gene data dimensions after mapping: 21458 genes × 72 samples\n"
]
}
],
"source": [
"# 1. From the output, we can see that 'ID' column in gene annotation contains Illumina IDs (ILMN_*)\n",
"# which matches the gene expression data identifiers, and 'Symbol' column contains the gene symbols\n",
"prob_col = 'ID'\n",
"gene_col = 'Symbol'\n",
"\n",
"# 2. Get gene mapping dataframe from the annotation dataframe\n",
"gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"\n",
"# Print information about the mapping and resulting gene data\n",
"print(f\"Mapped {len(gene_mapping)} probes to gene symbols\")\n",
"print(f\"Resulted in {len(gene_data)} unique genes\")\n",
"print(\"First 10 gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"print(f\"Gene data dimensions after mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n"
]
},
{
"cell_type": "markdown",
"id": "bd5d7e25",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "3f71eb79",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:31.150556Z",
"iopub.status.busy": "2025-03-25T06:31:31.150425Z",
"iopub.status.idle": "2025-03-25T06:31:45.178968Z",
"shell.execute_reply": "2025-03-25T06:31:45.178305Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: (20253, 72)\n",
"First 5 normalized gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Anxiety_disorder/gene_data/GSE119995.csv\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data saved to ../../output/preprocess/Anxiety_disorder/clinical_data/GSE119995.csv\n",
"Linked data shape: (72, 20255)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (72, 20255)\n",
"For the feature 'Anxiety_disorder', the least common label is '0.0' with 24 occurrences. This represents 33.33% of the dataset.\n",
"The distribution of the feature 'Anxiety_disorder' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '1.0' with 18 occurrences. This represents 25.00% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n",
"A new JSON file was created at: ../../output/preprocess/Anxiety_disorder/cohort_info.json\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Anxiety_disorder/GSE119995.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"First 5 normalized gene symbols: {normalized_gene_data.index[:5].tolist()}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Re-extract clinical data using the correct row indices and conversion functions from step 2\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# Get background information and clinical data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# Use the correct values and functions identified in step 2\n",
"trait_row = 4 # timepoint (b1=baseline vs others=post-exposure)\n",
"age_row = None # No age data available \n",
"gender_row = 2 # Sex information\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert timepoint to a binary trait for anxiety severity\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Handle non-string values\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # Baseline (b1) represents pre-exposure (0)\n",
" # Other timepoints (p24_1, pe1) represent post-exposure (1)\n",
" if value == \"b1\":\n",
" return 0 # baseline/pre-exposure\n",
" elif value in [\"p24_1\", \"pe1\"]:\n",
" return 1 # post-exposure (higher anxiety)\n",
" else:\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender to binary value\"\"\"\n",
" if value is None:\n",
" return None\n",
" \n",
" # Handle non-string values\n",
" if not isinstance(value, str):\n",
" return None\n",
" \n",
" # Extract the value after colon\n",
" if \":\" in value:\n",
" value = value.split(\":\", 1)[1].strip()\n",
" \n",
" # female=0, male=1\n",
" if value.lower() == \"female\":\n",
" return 0\n",
" elif value.lower() == \"male\":\n",
" return 1\n",
" else:\n",
" return None\n",
"\n",
"# Extract clinical features with correct row indices and conversion functions\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Save clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# 3. Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 4. Handle missing values\n",
"linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
"print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 5. Determine if trait and demographic features are biased\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 6. Conduct final quality validation\n",
"is_trait_available = True # We confirmed trait data is available in step 2\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains anxiety measurements (pre/post exposure) for panic disorder patients. Timepoints used as proxy for anxiety levels.\"\n",
")\n",
"\n",
"# 7. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|