File size: 26,315 Bytes
736e4a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "49f5c632",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:21.108218Z",
     "iopub.status.busy": "2025-03-25T06:31:21.107972Z",
     "iopub.status.idle": "2025-03-25T06:31:21.279168Z",
     "shell.execute_reply": "2025-03-25T06:31:21.278771Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Anxiety_disorder\"\n",
    "cohort = \"GSE119995\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n",
    "in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE119995\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE119995.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE119995.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE119995.csv\"\n",
    "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d5cdf12d",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "2ea14f00",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:21.280441Z",
     "iopub.status.busy": "2025-03-25T06:31:21.280287Z",
     "iopub.status.idle": "2025-03-25T06:31:21.579574Z",
     "shell.execute_reply": "2025-03-25T06:31:21.578981Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Exposure-induced changes of plasma mRNA expression levels in patients with panic disorder\"\n",
      "!Series_summary\t\"Anxiety disorders including panic disorders with or without agoraphobia are the most prevalent mental disorders. Exposure is a core technique within the framework of cognitive behavioral therapy to treat phobia- and anxiety-related symptoms. The primary aim of this study was to trace specific anxiety-related plasma gene expression changes of subjects with PD at three time points in order to identify biomarkers for acute anxiety states. In this intervention, the patient is exposed to highly feared and mostly avoided situations.\"\n",
      "!Series_overall_design\t\"Blood samples from individuals with panic disorder (n=24) were drawn at three time points during exposure: baseline, 1 hour post-exposure and 24 hours after exposure-onset.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['disease: panic disorder'], 1: ['tissue: blood plasma'], 2: ['Sex: female', 'Sex: male', 'Sex: not determined'], 3: ['medication: 0', 'medication: 1'], 4: ['timepoint: b1', 'timepoint: p24_1', 'timepoint: pe1'], 5: ['individual: 2', 'individual: 9', 'individual: 7', 'individual: 22', 'individual: 6', 'individual: 10', 'individual: 15', 'individual: 12', 'individual: 18', 'individual: 13', 'individual: 26', 'individual: 19', 'individual: 20', 'individual: 24', 'individual: 14', 'individual: 27', 'individual: 29', 'individual: 33', 'individual: 34', 'individual: 31', 'individual: 38', 'individual: 21', 'individual: 39', 'individual: 41']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "09bba9f8",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "612c0ca1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:21.581460Z",
     "iopub.status.busy": "2025-03-25T06:31:21.581314Z",
     "iopub.status.idle": "2025-03-25T06:31:21.592612Z",
     "shell.execute_reply": "2025-03-25T06:31:21.592135Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{0: [0.0, 0.0], 1: [1.0, 1.0], 2: [1.0, nan], 3: [nan, nan], 4: [nan, nan], 5: [nan, nan], 6: [nan, nan], 7: [nan, nan], 8: [nan, nan], 9: [nan, nan], 10: [nan, nan], 11: [nan, nan], 12: [nan, nan], 13: [nan, nan], 14: [nan, nan], 15: [nan, nan], 16: [nan, nan], 17: [nan, nan], 18: [nan, nan], 19: [nan, nan], 20: [nan, nan], 21: [nan, nan], 22: [nan, nan], 23: [nan, nan]}\n",
      "Clinical data saved to ../../output/preprocess/Anxiety_disorder/clinical_data/GSE119995.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Determine gene expression data availability\n",
    "# From the background information, this appears to be a study on plasma mRNA expression\n",
    "# which means it contains gene expression data\n",
    "is_gene_available = True\n",
    "\n",
    "# 2.1 Data Availability\n",
    "\n",
    "# Trait (Anxiety disorder)\n",
    "# All subjects have panic disorder (row 0), but this is a constant feature\n",
    "# The timepoint (row 4) provides information about anxiety levels during exposure\n",
    "# which can be used as a proxy for anxiety severity\n",
    "trait_row = 4\n",
    "\n",
    "# Age \n",
    "# Age information is not available in the sample characteristics\n",
    "age_row = None\n",
    "\n",
    "# Gender\n",
    "# Gender information is available in row 2 (Sex)\n",
    "gender_row = 2\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert timepoint to a binary trait for anxiety severity\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Handle non-string values\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Baseline (b1) represents pre-exposure (0)\n",
    "    # Other timepoints (p24_1, pe1) represent post-exposure (1)\n",
    "    if value == \"b1\":\n",
    "        return 0  # baseline/pre-exposure\n",
    "    elif value in [\"p24_1\", \"pe1\"]:\n",
    "        return 1  # post-exposure (higher anxiety)\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_age(value):\n",
    "    \"\"\"Convert age to continuous value\"\"\"\n",
    "    # Age is not available\n",
    "    return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary value\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Handle non-string values\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # female=0, male=1\n",
    "    if value.lower() == \"female\":\n",
    "        return 0\n",
    "    elif value.lower() == \"male\":\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check trait data availability\n",
    "is_trait_available = trait_row is not None\n",
    "\n",
    "# Initial filtering on usability\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "if trait_row is not None:\n",
    "    # We need to create a DataFrame that mimics the structure expected by geo_select_clinical_features\n",
    "    # The sample characteristics dictionary shows the rows with their values\n",
    "    sample_char_dict = {\n",
    "        0: ['disease: panic disorder'], \n",
    "        1: ['tissue: blood plasma'], \n",
    "        2: ['Sex: female', 'Sex: male', 'Sex: not determined'], \n",
    "        3: ['medication: 0', 'medication: 1'], \n",
    "        4: ['timepoint: b1', 'timepoint: p24_1', 'timepoint: pe1'], \n",
    "        5: ['individual: 2', 'individual: 9', 'individual: 7', 'individual: 22', 'individual: 6', \n",
    "            'individual: 10', 'individual: 15', 'individual: 12', 'individual: 18', 'individual: 13', \n",
    "            'individual: 26', 'individual: 19', 'individual: 20', 'individual: 24', 'individual: 14', \n",
    "            'individual: 27', 'individual: 29', 'individual: 33', 'individual: 34', 'individual: 31', \n",
    "            'individual: 38', 'individual: 21', 'individual: 39', 'individual: 41']\n",
    "    }\n",
    "    \n",
    "    # Convert to DataFrame with strings, not integers\n",
    "    clinical_data = pd.DataFrame.from_dict(sample_char_dict, orient='index')\n",
    "    \n",
    "    # Extract clinical features\n",
    "    clinical_data_selected = geo_select_clinical_features(\n",
    "        clinical_data,\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted features\n",
    "    preview_result = preview_df(clinical_data_selected)\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview_result)\n",
    "    \n",
    "    # Save the clinical data\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    clinical_data_selected.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1482c64d",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "248a3298",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:21.594411Z",
     "iopub.status.busy": "2025-03-25T06:31:21.594293Z",
     "iopub.status.idle": "2025-03-25T06:31:22.080860Z",
     "shell.execute_reply": "2025-03-25T06:31:22.080226Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n",
      "\n",
      "Gene data dimensions: 47290 genes × 72 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Extract the gene expression data from the matrix file\n",
    "gene_data = get_genetic_data(matrix_file)\n",
    "\n",
    "# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "print(\"\\nFirst 20 gene/probe identifiers:\")\n",
    "print(gene_data.index[:20])\n",
    "\n",
    "# 4. Print the dimensions of the gene expression data\n",
    "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
    "\n",
    "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
    "is_gene_available = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "f80d57f4",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "55e922eb",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:22.082656Z",
     "iopub.status.busy": "2025-03-25T06:31:22.082532Z",
     "iopub.status.idle": "2025-03-25T06:31:22.084903Z",
     "shell.execute_reply": "2025-03-25T06:31:22.084471Z"
    }
   },
   "outputs": [],
   "source": [
    "# Analyzing the gene identifiers\n",
    "# The gene identifiers start with \"ILMN_\" which indicates they are Illumina probe IDs\n",
    "# These are not standard human gene symbols and need to be mapped to gene symbols\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "4b2879c8",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "204a52bc",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:22.086343Z",
     "iopub.status.busy": "2025-03-25T06:31:22.086233Z",
     "iopub.status.idle": "2025-03-25T06:31:30.858479Z",
     "shell.execute_reply": "2025-03-25T06:31:30.857835Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. First get the file paths using geo_get_relevant_filepaths function\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7c77f44b",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "88c71780",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:30.860354Z",
     "iopub.status.busy": "2025-03-25T06:31:30.860208Z",
     "iopub.status.idle": "2025-03-25T06:31:31.148658Z",
     "shell.execute_reply": "2025-03-25T06:31:31.148010Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Mapped 44837 probes to gene symbols\n",
      "Resulted in 21458 unique genes\n",
      "First 10 gene symbols:\n",
      "Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
      "       'A4GALT', 'A4GNT'],\n",
      "      dtype='object', name='Gene')\n",
      "Gene data dimensions after mapping: 21458 genes × 72 samples\n"
     ]
    }
   ],
   "source": [
    "# 1. From the output, we can see that 'ID' column in gene annotation contains Illumina IDs (ILMN_*)\n",
    "# which matches the gene expression data identifiers, and 'Symbol' column contains the gene symbols\n",
    "prob_col = 'ID'\n",
    "gene_col = 'Symbol'\n",
    "\n",
    "# 2. Get gene mapping dataframe from the annotation dataframe\n",
    "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n",
    "\n",
    "# 3. Apply gene mapping to convert probe-level measurements to gene expression\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "\n",
    "# Print information about the mapping and resulting gene data\n",
    "print(f\"Mapped {len(gene_mapping)} probes to gene symbols\")\n",
    "print(f\"Resulted in {len(gene_data)} unique genes\")\n",
    "print(\"First 10 gene symbols:\")\n",
    "print(gene_data.index[:10])\n",
    "print(f\"Gene data dimensions after mapping: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "bd5d7e25",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "3f71eb79",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T06:31:31.150556Z",
     "iopub.status.busy": "2025-03-25T06:31:31.150425Z",
     "iopub.status.idle": "2025-03-25T06:31:45.178968Z",
     "shell.execute_reply": "2025-03-25T06:31:45.178305Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalizing gene symbols...\n",
      "Gene data shape after normalization: (20253, 72)\n",
      "First 5 normalized gene symbols: ['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Normalized gene data saved to ../../output/preprocess/Anxiety_disorder/gene_data/GSE119995.csv\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data saved to ../../output/preprocess/Anxiety_disorder/clinical_data/GSE119995.csv\n",
      "Linked data shape: (72, 20255)\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Data shape after handling missing values: (72, 20255)\n",
      "For the feature 'Anxiety_disorder', the least common label is '0.0' with 24 occurrences. This represents 33.33% of the dataset.\n",
      "The distribution of the feature 'Anxiety_disorder' in this dataset is fine.\n",
      "\n",
      "For the feature 'Gender', the least common label is '1.0' with 18 occurrences. This represents 25.00% of the dataset.\n",
      "The distribution of the feature 'Gender' in this dataset is fine.\n",
      "\n",
      "A new JSON file was created at: ../../output/preprocess/Anxiety_disorder/cohort_info.json\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data saved to ../../output/preprocess/Anxiety_disorder/GSE119995.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Normalize gene symbols in the gene expression data\n",
    "print(\"Normalizing gene symbols...\")\n",
    "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
    "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
    "print(f\"First 5 normalized gene symbols: {normalized_gene_data.index[:5].tolist()}\")\n",
    "\n",
    "# Save the normalized gene data\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "normalized_gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
    "\n",
    "# 2. Re-extract clinical data using the correct row indices and conversion functions from step 2\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# Get background information and clinical data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Use the correct values and functions identified in step 2\n",
    "trait_row = 4    # timepoint (b1=baseline vs others=post-exposure)\n",
    "age_row = None   # No age data available \n",
    "gender_row = 2   # Sex information\n",
    "\n",
    "def convert_trait(value):\n",
    "    \"\"\"Convert timepoint to a binary trait for anxiety severity\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Handle non-string values\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # Baseline (b1) represents pre-exposure (0)\n",
    "    # Other timepoints (p24_1, pe1) represent post-exposure (1)\n",
    "    if value == \"b1\":\n",
    "        return 0  # baseline/pre-exposure\n",
    "    elif value in [\"p24_1\", \"pe1\"]:\n",
    "        return 1  # post-exposure (higher anxiety)\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "def convert_gender(value):\n",
    "    \"\"\"Convert gender to binary value\"\"\"\n",
    "    if value is None:\n",
    "        return None\n",
    "    \n",
    "    # Handle non-string values\n",
    "    if not isinstance(value, str):\n",
    "        return None\n",
    "    \n",
    "    # Extract the value after colon\n",
    "    if \":\" in value:\n",
    "        value = value.split(\":\", 1)[1].strip()\n",
    "    \n",
    "    # female=0, male=1\n",
    "    if value.lower() == \"female\":\n",
    "        return 0\n",
    "    elif value.lower() == \"male\":\n",
    "        return 1\n",
    "    else:\n",
    "        return None\n",
    "\n",
    "# Extract clinical features with correct row indices and conversion functions\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "# Save clinical data\n",
    "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "selected_clinical_df.to_csv(out_clinical_data_file)\n",
    "print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
    "\n",
    "# 3. Link clinical and genetic data\n",
    "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
    "print(f\"Linked data shape: {linked_data.shape}\")\n",
    "\n",
    "# 4. Handle missing values\n",
    "linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
    "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
    "\n",
    "# 5. Determine if trait and demographic features are biased\n",
    "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "\n",
    "# 6. Conduct final quality validation\n",
    "is_trait_available = True  # We confirmed trait data is available in step 2\n",
    "is_usable = validate_and_save_cohort_info(\n",
    "    is_final=True,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=True,\n",
    "    is_trait_available=is_trait_available,\n",
    "    is_biased=is_biased,\n",
    "    df=linked_data,\n",
    "    note=\"Dataset contains anxiety measurements (pre/post exposure) for panic disorder patients. Timepoints used as proxy for anxiety levels.\"\n",
    ")\n",
    "\n",
    "# 7. Save linked data if usable\n",
    "if is_usable:\n",
    "    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "    linked_data.to_csv(out_data_file)\n",
    "    print(f\"Linked data saved to {out_data_file}\")\n",
    "else:\n",
    "    print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}