File size: 26,880 Bytes
736e4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "540f5fc0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:50.155019Z",
"iopub.status.busy": "2025-03-25T06:31:50.154733Z",
"iopub.status.idle": "2025-03-25T06:31:50.321543Z",
"shell.execute_reply": "2025-03-25T06:31:50.321185Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Anxiety_disorder\"\n",
"cohort = \"GSE78104\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Anxiety_disorder\"\n",
"in_cohort_dir = \"../../input/GEO/Anxiety_disorder/GSE78104\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Anxiety_disorder/GSE78104.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/GSE78104.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/GSE78104.csv\"\n",
"json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "1b5264cb",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "bc177a54",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:50.323037Z",
"iopub.status.busy": "2025-03-25T06:31:50.322873Z",
"iopub.status.idle": "2025-03-25T06:31:50.707270Z",
"shell.execute_reply": "2025-03-25T06:31:50.706886Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"lncRNA and mRNA expression data in peripheral blood sampled from patients with Obsessive-Compulsive Disorder\"\n",
"!Series_summary\t\"The aim of the study is to identify the global messenger RNA (mRNA) and long noncoding RNA (lncRNA) expression profiling in peripheral blood from thirty patients with Obsessive Compulsive Disorders (OCD) and thirty paired normal controls.\"\n",
"!Series_overall_design\t\"We quantified the gene transcripts in peripheral blood from thirty patients with OCD and thirty normal controls by the method of Microarray using Aglilent G3 lncRNA v4.04×180K.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['tissue: whole blood'], 1: ['disease state: Obsessive-Compulsive Disorder', 'disease state: normal control'], 2: ['gender: male', 'gender: female'], 3: ['age: 25y', 'age: 23y', 'age: 18y', 'age: 26y', 'age: 27y', 'age: 19y', 'age: 22y', 'age: 16y', 'age: 35y', 'age: 32y', 'age: 15y', 'age: 43y', 'age: 36y', 'age: 17y', 'age: 45y', 'age: 40y', 'age: 28y', 'age: 31y', 'age: 60y', 'age: 59y', 'age: 24y', 'age: 20y', 'age: 21y', 'age: 44y', 'age: 37y', 'age: 30y', 'age: 56y']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "58c5e144",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "1f40cbed",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:50.708663Z",
"iopub.status.busy": "2025-03-25T06:31:50.708543Z",
"iopub.status.idle": "2025-03-25T06:31:50.715491Z",
"shell.execute_reply": "2025-03-25T06:31:50.715169Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data file not found at ../../input/GEO/Anxiety_disorder/GSE78104/clinical_data.csv\n",
"Unable to proceed with clinical feature extraction.\n",
"Creating empty clinical data structure for compatibility.\n",
"Empty clinical data template saved to ../../output/preprocess/Anxiety_disorder/clinical_data/GSE78104.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains both mRNA and lncRNA expression data,\n",
"# which are suitable for our gene expression analysis\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# Looking at the data, Obsessive-Compulsive Disorder is in sample characteristic row 1\n",
"# We need to map this to Anxiety_disorder as per our study focus\n",
"trait_row = 1\n",
"# Age is in sample characteristic row 3\n",
"age_row = 3\n",
"# Gender is in sample characteristic row 2\n",
"gender_row = 2\n",
"\n",
"# 2.2 Data Type Conversion\n",
"# For trait, treat OCD as related to anxiety disorder based on clinical knowledge\n",
"def convert_trait(value):\n",
" if not value or \":\" not in value:\n",
" return None\n",
" value = value.split(\":\", 1)[1].strip().lower()\n",
" if \"obsessive-compulsive disorder\" in value or \"ocd\" in value:\n",
" # OCD is considered an anxiety-related disorder in this study\n",
" return 1\n",
" elif \"normal control\" in value or \"control\" in value or \"healthy\" in value:\n",
" return 0\n",
" return None\n",
"\n",
"# For age, convert to continuous numeric values\n",
"def convert_age(value):\n",
" if not value or \":\" not in value:\n",
" return None\n",
" value = value.split(\":\", 1)[1].strip()\n",
" # Extract digits from strings like \"age: 25y\"\n",
" import re\n",
" match = re.search(r'(\\d+)', value)\n",
" if match:\n",
" return int(match.group(1))\n",
" return None\n",
"\n",
"# For gender, convert to binary (female: 0, male: 1)\n",
"def convert_gender(value):\n",
" if not value or \":\" not in value:\n",
" return None\n",
" value = value.split(\":\", 1)[1].strip().lower()\n",
" if \"female\" in value:\n",
" return 0\n",
" elif \"male\" in value:\n",
" return 1\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Trait data is available as trait_row is not None\n",
"is_trait_available = trait_row is not None\n",
"# Initial filtering on usability\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"if trait_row is not None:\n",
" # We need to access the raw sample characteristics data\n",
" # First, try to load from the expected location\n",
" clinical_file_path = os.path.join(in_cohort_dir, \"clinical_data.csv\")\n",
" \n",
" # Check if the file exists before attempting to read it\n",
" if os.path.exists(clinical_file_path):\n",
" clinical_data = pd.read_csv(clinical_file_path)\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the data\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview_df(selected_clinical_df))\n",
" \n",
" # Save clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" else:\n",
" print(f\"Clinical data file not found at {clinical_file_path}\")\n",
" print(\"Unable to proceed with clinical feature extraction.\")\n",
" # Create empty or default clinical data to allow the pipeline to continue\n",
" print(\"Creating empty clinical data structure for compatibility.\")\n",
" # This empty dataframe will be handled in subsequent steps\n",
" empty_clinical_df = pd.DataFrame(columns=[trait, 'Age', 'Gender'])\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" empty_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Empty clinical data template saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "2c8ad28e",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "03070597",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:50.716723Z",
"iopub.status.busy": "2025-03-25T06:31:50.716608Z",
"iopub.status.idle": "2025-03-25T06:31:51.352113Z",
"shell.execute_reply": "2025-03-25T06:31:51.351755Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"First 20 gene/probe identifiers:\n",
"Index(['(+)E1A_r60_1', '(+)E1A_r60_3', '(+)E1A_r60_a104', '(+)E1A_r60_a107',\n",
" '(+)E1A_r60_a135', '(+)E1A_r60_a20', '(+)E1A_r60_a22', '(+)E1A_r60_a97',\n",
" '(+)E1A_r60_n11', '(+)E1A_r60_n9', '(-)3xSLv1', 'A_19_P00315459',\n",
" 'A_19_P00315492', 'A_19_P00315502', 'A_19_P00315506', 'A_19_P00315538',\n",
" 'A_19_P00315633', 'A_19_P00315668', 'A_19_P00315717', 'A_19_P00315718'],\n",
" dtype='object', name='ID')\n",
"\n",
"Gene data dimensions: 111087 genes × 60 samples\n"
]
}
],
"source": [
"# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Extract the gene expression data from the matrix file\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 3. Print the first 20 row IDs (gene or probe identifiers)\n",
"print(\"\\nFirst 20 gene/probe identifiers:\")\n",
"print(gene_data.index[:20])\n",
"\n",
"# 4. Print the dimensions of the gene expression data\n",
"print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n",
"\n",
"# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n",
"is_gene_available = True\n"
]
},
{
"cell_type": "markdown",
"id": "52b1fe3b",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "a80773db",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:51.353529Z",
"iopub.status.busy": "2025-03-25T06:31:51.353398Z",
"iopub.status.idle": "2025-03-25T06:31:51.355338Z",
"shell.execute_reply": "2025-03-25T06:31:51.355016Z"
}
},
"outputs": [],
"source": [
"# Looking at the gene identifiers:\n",
"# These appear to be platform-specific probe IDs rather than standard human gene symbols.\n",
"# The identifiers like \"(+)E1A_r60_1\" and \"A_19_P00315459\" are not standard gene symbols\n",
"# but rather appear to be Agilent microarray probe IDs.\n",
"# Standard human gene symbols would look like BRCA1, TP53, etc.\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "f387481b",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "8cf8bff8",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:31:51.356540Z",
"iopub.status.busy": "2025-03-25T06:31:51.356424Z",
"iopub.status.idle": "2025-03-25T06:32:02.325629Z",
"shell.execute_reply": "2025-03-25T06:32:02.324944Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['A_19_P00315459', 'A_19_P00315492', 'A_19_P00315502', 'A_19_P00315506', 'A_19_P00315538'], 'CONTROL_TYPE': ['FALSE', 'FALSE', 'FALSE', 'FALSE', 'FALSE'], 'SEQUENCE': ['AGCCCCCACTGTTCCACTTATTGTGATGGTTTGTATATCTTTATTTCAAAGAAGATCTGT', 'AGGCAGCCTTGCTGTTGGGGGTTATTGGCAGCTGTTGGGGGTTAGAGACAGGACTCTCAT', 'AGCCGGGATCGGGTTGTTGTTAATTTCTTAAGCAATTTCTAAATTCTGTATTGACTCTCT', 'CAATGGATTCCATGTTTCTTTTTCTTGGGGGGAGCAGGGAGGGAGAAAGGTAGAAAAATG', 'CACAATGACCATCATTGAGGGCGATGTTTATGCTTCCATTGTTAGTTTAGATATTTTGTT'], 'TargetID': [nan, 'Q73P46', 'P01115', nan, nan], 'ncRNA_SeqID': [nan, nan, nan, nan, nan], 'Source': ['Agilent_humanG3V2', 'Agilent_humanG3V2', 'Agilent_humanG3V2', nan, nan], 'ncRNA_Accession': [nan, nan, nan, nan, nan], 'Chr': ['chrX', 'chr4', 'chr10', nan, nan], 'Start': [149131107.0, 129376376.0, 6780785.0, nan, nan], 'End': [149131166.0, 129376435.0, 6780844.0, nan, nan], 'strand': ['+', '+', '+', nan, nan], 'Description': [nan, 'Q73P46_TREDE (Q73P46) Branched-chain amino acid ABC transporter, permease protein, partial (5%) [THC2614189]', 'RASH_MSVHA (P01115) Transforming protein p29 precursor [Contains: Transforming protein p21], partial (6%) [THC2657193]', nan, nan], 'Genome': ['hg19', 'hg19', 'hg19', nan, nan], 'GeneSymbol': [nan, 'Q73P46', 'P01115', nan, nan], 'Seq_type': ['mRNA', 'mRNA', 'mRNA', nan, nan], 'ControlType': ['FALSE', 'FALSE', 'FALSE', nan, nan], 'EntrezGeneID': [nan, nan, nan, nan, nan], 'GenbankAccession': ['U66048', nan, nan, nan, nan], 'GeneName': [nan, nan, nan, nan, nan], 'Go': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan], 'UniGeneID': [nan, nan, nan, nan, nan], 'SPOT_ID': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. First get the file paths using geo_get_relevant_filepaths function\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "d5588e09",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "6aab0471",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:32:02.327498Z",
"iopub.status.busy": "2025-03-25T06:32:02.327373Z",
"iopub.status.idle": "2025-03-25T06:32:02.715930Z",
"shell.execute_reply": "2025-03-25T06:32:02.715305Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping shape: (21812, 2)\n",
"First few rows of the mapping data:\n",
" ID Gene\n",
"1 A_19_P00315492 Q73P46\n",
"2 A_19_P00315502 P01115\n",
"6 A_19_P00315668 HIPK2\n",
"7 A_19_P00315717 FAM200B\n",
"8 A_19_P00315718 FAM200B\n",
"Number of unique probe IDs in mapping: 21812\n",
"Number of unique gene symbols in mapping: 16487\n",
"Gene expression data shape after mapping: (15681, 60)\n",
"First few gene symbols in the processed data:\n",
"Index(['A1BG', 'A1CF', 'A2LD1', 'A2M', 'A4GALT', 'A4GNT', 'AAAS', 'AACS',\n",
" 'AADAC', 'AADACL2'],\n",
" dtype='object', name='Gene')\n",
"Number of unique genes after mapping: 15681\n",
"Example gene symbols: ['A1BG', 'A1CF', 'A2LD1', 'A2M', 'A4GALT', 'A4GNT', 'AAAS', 'AACS', 'AADAC', 'AADACL2', 'AADACL3', 'AADACL4', 'AAGAB', 'AAK1', 'AAMP', 'AANAT', 'AARS', 'AARS2', 'AASDHPPT', 'AATF']\n"
]
}
],
"source": [
"# 1. Determine the appropriate columns for gene mapping\n",
"# Looking at the gene annotation preview, I can see:\n",
"# - The 'ID' column contains the probe identifiers (e.g., 'A_19_P00315459')\n",
"# - The 'GeneSymbol' column appears to contain gene symbols, but seems to have some non-standard entries\n",
"\n",
"# 2. Create the gene mapping dataframe\n",
"# The mapping should be from 'ID' (probe identifier) to 'GeneSymbol' (gene symbol)\n",
"mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GeneSymbol')\n",
"\n",
"# Print some information about the mapping\n",
"print(f\"Gene mapping shape: {mapping_df.shape}\")\n",
"print(\"First few rows of the mapping data:\")\n",
"print(mapping_df.head())\n",
"\n",
"# Check how many unique probe IDs and gene symbols exist in the mapping\n",
"print(f\"Number of unique probe IDs in mapping: {mapping_df['ID'].nunique()}\")\n",
"print(f\"Number of unique gene symbols in mapping: {mapping_df['Gene'].nunique()}\")\n",
"\n",
"# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n",
"# Use the function that handles the many-to-many relation between probes and genes\n",
"gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)\n",
"\n",
"# Print information about the resulting gene expression data\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"First few gene symbols in the processed data:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Additional check to ensure we have meaningful gene symbols\n",
"unique_genes = gene_data.index.unique()\n",
"print(f\"Number of unique genes after mapping: {len(unique_genes)}\")\n",
"print(f\"Example gene symbols: {list(unique_genes[:20])}\")\n"
]
},
{
"cell_type": "markdown",
"id": "df02aca4",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "381d38a6",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:32:02.717737Z",
"iopub.status.busy": "2025-03-25T06:32:02.717611Z",
"iopub.status.idle": "2025-03-25T06:32:09.957628Z",
"shell.execute_reply": "2025-03-25T06:32:09.956990Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalizing gene symbols...\n",
"Gene data shape after normalization: (15442, 60)\n",
"First 5 normalized gene symbols: ['A1BG', 'A1CF', 'A2M', 'A4GALT', 'A4GNT']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Anxiety_disorder/gene_data/GSE78104.csv\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data saved to ../../output/preprocess/Anxiety_disorder/clinical_data/GSE78104.csv\n",
"Linked data shape: (60, 15445)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Data shape after handling missing values: (60, 15445)\n",
"For the feature 'Anxiety_disorder', the least common label is '1.0' with 30 occurrences. This represents 50.00% of the dataset.\n",
"The distribution of the feature 'Anxiety_disorder' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 18.75\n",
" 50% (Median): 27.0\n",
" 75%: 35.0\n",
"Min: 15.0\n",
"Max: 60.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '0.0' with 20 occurrences. This represents 33.33% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is fine.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Anxiety_disorder/GSE78104.csv\n"
]
}
],
"source": [
"# 1. Normalize gene symbols in the gene expression data\n",
"print(\"Normalizing gene symbols...\")\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n",
"print(f\"First 5 normalized gene symbols: {normalized_gene_data.index[:5].tolist()}\")\n",
"\n",
"# Save the normalized gene data\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Re-extract clinical data since step 2 identified that trait data is available\n",
"# First, get the paths again\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# Get background information and clinical data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# Extract clinical features using the conversion functions defined in step 2\n",
"def convert_trait(value):\n",
" if not value or \":\" not in value:\n",
" return None\n",
" value = value.split(\":\", 1)[1].strip().lower()\n",
" if \"obsessive-compulsive disorder\" in value or \"ocd\" in value:\n",
" # OCD is considered an anxiety-related disorder in this study\n",
" return 1\n",
" elif \"normal control\" in value or \"control\" in value or \"healthy\" in value:\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" if not value or \":\" not in value:\n",
" return None\n",
" value = value.split(\":\", 1)[1].strip()\n",
" import re\n",
" match = re.search(r'(\\d+)', value)\n",
" if match:\n",
" return int(match.group(1))\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" if not value or \":\" not in value:\n",
" return None\n",
" value = value.split(\":\", 1)[1].strip().lower()\n",
" if \"female\" in value:\n",
" return 0\n",
" elif \"male\" in value:\n",
" return 1\n",
" return None\n",
"\n",
"# Using values identified in step 2\n",
"trait_row = 1 # OCD status\n",
"age_row = 3 # Age\n",
"gender_row = 2 # Gender\n",
"\n",
"# Extract clinical features\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Save clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# 3. Link clinical and genetic data\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"print(f\"Linked data shape: {linked_data.shape}\")\n",
"\n",
"# 4. Handle missing values\n",
"linked_data = handle_missing_values(linked_data, trait_col=trait)\n",
"print(f\"Data shape after handling missing values: {linked_data.shape}\")\n",
"\n",
"# 5. Determine if trait and demographic features are biased\n",
"is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 6. Conduct final quality validation\n",
"is_trait_available = True # We confirmed trait data is available in step 2\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=True,\n",
" is_trait_available=is_trait_available,\n",
" is_biased=is_biased,\n",
" df=linked_data,\n",
" note=\"Dataset contains human OCD data, which is relevant to anxiety disorders. Contains gene expression, age, and gender information.\"\n",
")\n",
"\n",
"# 7. Save linked data if usable\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|