File size: 19,084 Bytes
736e4a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "77c27aad",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:53:26.937307Z",
"iopub.status.busy": "2025-03-25T06:53:26.937200Z",
"iopub.status.idle": "2025-03-25T06:53:27.093363Z",
"shell.execute_reply": "2025-03-25T06:53:27.093022Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Autism_spectrum_disorder_(ASD)\"\n",
"cohort = \"GSE87847\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)\"\n",
"in_cohort_dir = \"../../input/GEO/Autism_spectrum_disorder_(ASD)/GSE87847\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE87847.csv\"\n",
"json_path = \"../../output/preprocess/Autism_spectrum_disorder_(ASD)/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "e4542924",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "00bb3d64",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:53:27.094720Z",
"iopub.status.busy": "2025-03-25T06:53:27.094586Z",
"iopub.status.idle": "2025-03-25T06:53:27.206225Z",
"shell.execute_reply": "2025-03-25T06:53:27.205931Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"A Putative Blood-Based Biomarker for Autism Spectrum Disorder-Associated Ileocolitis\"\n",
"!Series_summary\t\"Analysis of gene expression in inflamed gastrointestinal tissue and blood from GI-symptomatic children with ASD compared to non-inflamed tissue and blood from typically developing GI-syptomatic children. The hypothesis being tested was that peripheral blood would yield a surrogate biomarker for GI inflammation in children with ASD.\"\n",
"!Series_overall_design\t\"Total RNA was isolated from inflamed gastrointestinal tissue (terminal ileum and/or colon) and peripheral blood from children with ASD and corresponding (non-iflamed) tissue and blood from typically developing children.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['sample type: Autism Spectrum Disorder', 'sample type: typically developing'], 1: ['disease state: inflamed', 'disease state: non-inflamed'], 2: ['Sex: male', 'Sex: female']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "c4f7cd57",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "249f80d5",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:53:27.207230Z",
"iopub.status.busy": "2025-03-25T06:53:27.207128Z",
"iopub.status.idle": "2025-03-25T06:53:27.212453Z",
"shell.execute_reply": "2025-03-25T06:53:27.212178Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Error in clinical feature extraction: [Errno 2] No such file or directory: '../../input/GEO/Autism_spectrum_disorder_(ASD)/GSE87847/clinical_data.csv'\n",
"Clinical data might not be available yet from previous steps.\n"
]
}
],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import os\n",
"import json\n",
"from typing import Optional, Callable, Dict, Any\n",
"\n",
"# 1. Determine if gene expression data is available\n",
"# From the background information, we can see this dataset contains gene expression data from tissues and blood\n",
"is_gene_available = True # Gene expression data is available\n",
"\n",
"# 2. Define variables for trait, age, and gender availability\n",
"\n",
"# 2.1 Data Availability\n",
"# From the sample characteristics dictionary:\n",
"# Key 0 contains info about ASD vs typically developing (trait)\n",
"# Key 1 contains info about inflammation state (not our target trait)\n",
"# Key 2 contains gender information\n",
"# No age information is available\n",
"\n",
"trait_row = 0 # ASD status is in row 0\n",
"age_row = None # Age information is not available\n",
"gender_row = 2 # Gender information is in row 2\n",
"\n",
"# 2.2 Data Type Conversion Functions\n",
"\n",
"def convert_trait(value):\n",
" \"\"\"Convert ASD trait values to binary (1 for ASD, 0 for typically developing)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after the colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if 'autism' in value.lower() or 'asd' in value.lower():\n",
" return 1\n",
" elif 'typically developing' in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value):\n",
" \"\"\"Convert age values to continuous numbers\"\"\"\n",
" # We don't have age data in this dataset\n",
" return None\n",
"\n",
"def convert_gender(value):\n",
" \"\"\"Convert gender values to binary (0 for female, 1 for male)\"\"\"\n",
" if pd.isna(value):\n",
" return None\n",
" \n",
" # Extract value after the colon if present\n",
" if ':' in value:\n",
" value = value.split(':', 1)[1].strip()\n",
" \n",
" if 'male' in value.lower():\n",
" return 1\n",
" elif 'female' in value.lower():\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"# 3. Save metadata - Initial filtering\n",
"# trait_row is not None, so trait data is available\n",
"is_trait_available = trait_row is not None\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction (if trait data is available)\n",
"if trait_row is not None:\n",
" # Load the clinical data\n",
" # Assuming clinical_data was obtained in a previous step and is available\n",
" try:\n",
" # This is a placeholder - the actual clinical_data should come from a previous step\n",
" clinical_data = pd.read_csv(os.path.join(in_cohort_dir, \"clinical_data.csv\"))\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview)\n",
" \n",
" # Save the clinical data\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
" except Exception as e:\n",
" print(f\"Error in clinical feature extraction: {e}\")\n",
" print(\"Clinical data might not be available yet from previous steps.\")\n"
]
},
{
"cell_type": "markdown",
"id": "0f085a2c",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "cbde29b8",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:53:27.213311Z",
"iopub.status.busy": "2025-03-25T06:53:27.213212Z",
"iopub.status.idle": "2025-03-25T06:53:27.413447Z",
"shell.execute_reply": "2025-03-25T06:53:27.413152Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Index(['7A5', 'A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1',\n",
" 'A3GALT2', 'A4GALT', 'A4GNT', 'AAA1', 'AAAS', 'AACS', 'AADAC',\n",
" 'AADACL1', 'AADACL2', 'AADACL4', 'AADAT', 'AAGAB'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n",
"gene_data = get_genetic_data(matrix_file)\n",
"\n",
"# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n",
"print(gene_data.index[:20])\n"
]
},
{
"cell_type": "markdown",
"id": "7e1f98bc",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "94b155ca",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:53:27.414657Z",
"iopub.status.busy": "2025-03-25T06:53:27.414541Z",
"iopub.status.idle": "2025-03-25T06:53:27.416397Z",
"shell.execute_reply": "2025-03-25T06:53:27.416137Z"
}
},
"outputs": [],
"source": [
"# I need to review the gene identifiers from the gene expression data\n",
"\n",
"# These appear to be human gene symbols, not probe IDs or other identifiers that would require mapping.\n",
"# The list includes well-known gene symbols like A1BG, A2M, AAAS, AADAC, etc.\n",
"# These are standard HGNC gene symbols and don't require mapping to other identifiers.\n",
"\n",
"requires_gene_mapping = False\n"
]
},
{
"cell_type": "markdown",
"id": "5ff7e960",
"metadata": {},
"source": [
"### Step 5: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "9c245ea3",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T06:53:27.417486Z",
"iopub.status.busy": "2025-03-25T06:53:27.417382Z",
"iopub.status.idle": "2025-03-25T06:53:40.080124Z",
"shell.execute_reply": "2025-03-25T06:53:40.079269Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{'GSM2341810': [1.0, 1.0], 'GSM2341811': [1.0, 1.0], 'GSM2341812': [1.0, 1.0], 'GSM2341813': [1.0, 1.0], 'GSM2341814': [1.0, 1.0], 'GSM2341815': [1.0, 1.0], 'GSM2341816': [1.0, 1.0], 'GSM2341817': [1.0, 1.0], 'GSM2341818': [1.0, 1.0], 'GSM2341819': [1.0, 1.0], 'GSM2341820': [1.0, 1.0], 'GSM2341821': [1.0, 1.0], 'GSM2341822': [1.0, 1.0], 'GSM2341823': [1.0, 1.0], 'GSM2341824': [1.0, 1.0], 'GSM2341825': [1.0, 1.0], 'GSM2341826': [1.0, 1.0], 'GSM2341827': [1.0, 1.0], 'GSM2341828': [1.0, 1.0], 'GSM2341829': [1.0, 1.0], 'GSM2341830': [1.0, 1.0], 'GSM2341831': [1.0, 1.0], 'GSM2341832': [1.0, 1.0], 'GSM2341833': [1.0, 1.0], 'GSM2341834': [1.0, 1.0], 'GSM2341835': [1.0, 1.0], 'GSM2341836': [1.0, 1.0], 'GSM2341837': [1.0, 1.0], 'GSM2341838': [1.0, 1.0], 'GSM2341839': [1.0, 1.0], 'GSM2341840': [1.0, 1.0], 'GSM2341841': [1.0, 1.0], 'GSM2341842': [1.0, 1.0], 'GSM2341843': [1.0, 1.0], 'GSM2341844': [1.0, 1.0], 'GSM2341845': [1.0, 1.0], 'GSM2341846': [1.0, 1.0], 'GSM2341847': [1.0, 1.0], 'GSM2341848': [1.0, 1.0], 'GSM2341849': [1.0, 1.0], 'GSM2341850': [1.0, 1.0], 'GSM2341851': [1.0, 1.0], 'GSM2341852': [1.0, 1.0], 'GSM2341853': [1.0, 1.0], 'GSM2341854': [1.0, 1.0], 'GSM2341855': [0.0, 1.0], 'GSM2341856': [0.0, 1.0], 'GSM2341857': [0.0, 1.0], 'GSM2341858': [0.0, 1.0], 'GSM2341859': [0.0, 1.0], 'GSM2341860': [0.0, 1.0], 'GSM2341861': [0.0, 1.0], 'GSM2341862': [0.0, 1.0], 'GSM2341863': [0.0, 1.0], 'GSM2341864': [0.0, 1.0], 'GSM2341865': [0.0, 1.0], 'GSM2341866': [0.0, 1.0], 'GSM2341867': [0.0, 1.0], 'GSM2341868': [0.0, 1.0], 'GSM2341869': [0.0, 1.0], 'GSM2341870': [0.0, 1.0], 'GSM2341871': [0.0, 1.0], 'GSM2341872': [0.0, 1.0], 'GSM2341873': [0.0, 1.0], 'GSM2341874': [0.0, 1.0], 'GSM2341875': [0.0, 1.0], 'GSM2341876': [0.0, 1.0], 'GSM2341877': [0.0, 1.0], 'GSM2341878': [0.0, 1.0], 'GSM2341879': [0.0, 1.0], 'GSM2341880': [0.0, 1.0], 'GSM2341881': [0.0, 1.0], 'GSM2341882': [0.0, 1.0], 'GSM2341883': [0.0, 1.0], 'GSM2341884': [0.0, 1.0], 'GSM2341885': [0.0, 1.0], 'GSM2341886': [0.0, 1.0], 'GSM2341887': [0.0, 1.0], 'GSM2341888': [0.0, 1.0], 'GSM2341889': [0.0, 1.0], 'GSM2341890': [0.0, 1.0], 'GSM2341891': [0.0, 1.0], 'GSM2341892': [0.0, 1.0], 'GSM2341893': [0.0, 1.0], 'GSM2341894': [0.0, 1.0], 'GSM2341895': [0.0, 1.0], 'GSM2341896': [0.0, 1.0], 'GSM2341897': [0.0, 1.0], 'GSM2341898': [0.0, 1.0], 'GSM2341899': [0.0, 1.0], 'GSM2341900': [0.0, 1.0], 'GSM2341901': [0.0, 1.0], 'GSM2341902': [0.0, 1.0]}\n",
"Clinical data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/clinical_data/GSE87847.csv\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Normalized gene data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/gene_data/GSE87847.csv\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"For the feature 'Autism_spectrum_disorder_(ASD)', the least common label is '1.0' with 45 occurrences. This represents 48.39% of the dataset.\n",
"The distribution of the feature 'Autism_spectrum_disorder_(ASD)' in this dataset is fine.\n",
"\n",
"For the feature 'Gender', the least common label is '1.0' with 93 occurrences. This represents 100.00% of the dataset.\n",
"The distribution of the feature 'Gender' in this dataset is severely biased.\n",
"\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data saved to ../../output/preprocess/Autism_spectrum_disorder_(ASD)/GSE87847.csv\n"
]
}
],
"source": [
"# 1. We need to first create the selected_clinical_df using clinical_data from Step 1\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"# Preview the extracted clinical features\n",
"preview = preview_df(selected_clinical_df)\n",
"print(\"Preview of selected clinical features:\")\n",
"print(preview)\n",
"\n",
"# Save the clinical data\n",
"os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
"selected_clinical_df.to_csv(out_clinical_data_file)\n",
"print(f\"Clinical data saved to {out_clinical_data_file}\")\n",
"\n",
"# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n",
"normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"# Create directory if it doesn't exist\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"normalized_gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Normalized gene data saved to {out_gene_data_file}\")\n",
"\n",
"# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function from the library.\n",
"linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data)\n",
"\n",
"# 3. Handle missing values in the linked data\n",
"linked_data = handle_missing_values(linked_data, trait)\n",
"\n",
"# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n",
"is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
"\n",
"# 5. Conduct quality check and save the cohort information.\n",
"is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data, \n",
" note=\"Dataset contains gene expression data from both blood and GI tissue of ASD and typically developing children.\"\n",
")\n",
"\n",
"# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n",
"if is_usable:\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" print(f\"Linked data saved to {out_data_file}\")\n",
"else:\n",
" print(\"The dataset was determined to be not usable for analysis.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|