File size: 25,580 Bytes
53eb596
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "85ccdb22",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:10.934495Z",
     "iopub.status.busy": "2025-03-25T08:01:10.934382Z",
     "iopub.status.idle": "2025-03-25T08:01:11.100388Z",
     "shell.execute_reply": "2025-03-25T08:01:11.100033Z"
    }
   },
   "outputs": [],
   "source": [
    "import sys\n",
    "import os\n",
    "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
    "\n",
    "# Path Configuration\n",
    "from tools.preprocess import *\n",
    "\n",
    "# Processing context\n",
    "trait = \"Celiac_Disease\"\n",
    "cohort = \"GSE164883\"\n",
    "\n",
    "# Input paths\n",
    "in_trait_dir = \"../../input/GEO/Celiac_Disease\"\n",
    "in_cohort_dir = \"../../input/GEO/Celiac_Disease/GSE164883\"\n",
    "\n",
    "# Output paths\n",
    "out_data_file = \"../../output/preprocess/Celiac_Disease/GSE164883.csv\"\n",
    "out_gene_data_file = \"../../output/preprocess/Celiac_Disease/gene_data/GSE164883.csv\"\n",
    "out_clinical_data_file = \"../../output/preprocess/Celiac_Disease/clinical_data/GSE164883.csv\"\n",
    "json_path = \"../../output/preprocess/Celiac_Disease/cohort_info.json\"\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "8baefe83",
   "metadata": {},
   "source": [
    "### Step 1: Initial Data Loading"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "71888196",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:11.101831Z",
     "iopub.status.busy": "2025-03-25T08:01:11.101689Z",
     "iopub.status.idle": "2025-03-25T08:01:11.254877Z",
     "shell.execute_reply": "2025-03-25T08:01:11.254453Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Background Information:\n",
      "!Series_title\t\"Transcriptomic heterogeneity of Coeliac Disease biopsies from the duodenum\"\n",
      "!Series_summary\t\"Here, we present a high-resolution analysis of the transcriptomes extracted from duodenal probes of 25 children and adolescents with active CD and 21 children without CD but with diverse intestinal afflictions as controls. We found that the transcriptomes of CD patients divide into three subgroups, a mixed group resembling part of control cases and a CD-low and CD-high groups referring to lower and higher levels of CD severity\"\n",
      "!Series_summary\t\"Despite generally increased inflammation, considerable variation in inflammation-level between subgroups was observed, which was further de-chiffred into immune cell types using immune cell de-convolution\"\n",
      "!Series_overall_design\t\"one biopsy (15–20 mg) was taken from descending duodenum of each patient. Fresh tissue samples were snap frozen and stored in liquid nitrogen until preparation. Frozen biopsies were disrupted and homogenized by TissueLyzer from Quiagen (Hilden, Germany). Total RNA was isolated using AllPrep® DNA/RNA Micro kit (QIAGEN, Hilden, Germany) and stored at -70°C.\"\n",
      "Sample Characteristics Dictionary:\n",
      "{0: ['disease: Control', 'disease: Celiac disease'], 1: ['marsh stage: 0', 'marsh stage: 3C', 'marsh stage: 3B', 'marsh stage: 3A', 'marsh stage: 1'], 2: ['age: 1', 'age: 3', 'age: 4', 'age: 7', 'age: 6', 'age: 9', 'age: 10', 'age: 11', 'age: 12', 'age: 13', 'age: 14', 'age: 15', 'age: 16', 'age: 17', 'age: 2', 'age: 5', 'age: 8']}\n"
     ]
    }
   ],
   "source": [
    "from tools.preprocess import *\n",
    "# 1. Identify the paths to the SOFT file and the matrix file\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "\n",
    "# 2. Read the matrix file to obtain background information and sample characteristics data\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
    "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
    "\n",
    "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
    "print(\"Background Information:\")\n",
    "print(background_info)\n",
    "print(\"Sample Characteristics Dictionary:\")\n",
    "print(sample_characteristics_dict)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "71edd5f9",
   "metadata": {},
   "source": [
    "### Step 2: Dataset Analysis and Clinical Feature Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "07e6ebc2",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:11.256386Z",
     "iopub.status.busy": "2025-03-25T08:01:11.256265Z",
     "iopub.status.idle": "2025-03-25T08:01:11.265818Z",
     "shell.execute_reply": "2025-03-25T08:01:11.265516Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Preview of selected clinical features:\n",
      "{'GSM5022362': [0.0, 1.0], 'GSM5022363': [1.0, 3.0], 'GSM5022364': [1.0, 3.0], 'GSM5022365': [1.0, 4.0], 'GSM5022366': [1.0, 7.0], 'GSM5022367': [0.0, 6.0], 'GSM5022368': [1.0, 9.0], 'GSM5022369': [0.0, 10.0], 'GSM5022370': [1.0, 10.0], 'GSM5022371': [0.0, 11.0], 'GSM5022372': [1.0, 11.0], 'GSM5022373': [1.0, 12.0], 'GSM5022374': [0.0, 12.0], 'GSM5022375': [0.0, 12.0], 'GSM5022376': [0.0, 12.0], 'GSM5022377': [0.0, 13.0], 'GSM5022378': [1.0, 13.0], 'GSM5022379': [1.0, 13.0], 'GSM5022380': [0.0, 14.0], 'GSM5022381': [0.0, 15.0], 'GSM5022382': [1.0, 16.0], 'GSM5022383': [1.0, 16.0], 'GSM5022384': [0.0, 17.0], 'GSM5022385': [1.0, 17.0], 'GSM5022386': [0.0, 17.0], 'GSM5022387': [1.0, 3.0], 'GSM5022388': [0.0, 2.0], 'GSM5022389': [0.0, 2.0], 'GSM5022390': [1.0, 3.0], 'GSM5022391': [1.0, 4.0], 'GSM5022392': [1.0, 4.0], 'GSM5022393': [1.0, 5.0], 'GSM5022394': [1.0, 4.0], 'GSM5022395': [0.0, 7.0], 'GSM5022396': [1.0, 8.0], 'GSM5022397': [1.0, 12.0], 'GSM5022398': [0.0, 12.0], 'GSM5022399': [1.0, 13.0], 'GSM5022400': [1.0, 13.0], 'GSM5022401': [1.0, 14.0], 'GSM5022402': [0.0, 14.0], 'GSM5022403': [0.0, 14.0], 'GSM5022404': [0.0, 15.0], 'GSM5022405': [0.0, 15.0], 'GSM5022406': [1.0, 15.0], 'GSM5022407': [0.0, 16.0], 'GSM5022408': [0.0, 14.0], 'GSM5022409': [1.0, 3.0]}\n",
      "Clinical data saved to ../../output/preprocess/Celiac_Disease/clinical_data/GSE164883.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Gene Expression Data Availability\n",
    "# Based on the background information, this dataset contains transcriptome data from duodenal biopsies\n",
    "# which indicates gene expression data is available\n",
    "is_gene_available = True\n",
    "\n",
    "# 2. Variable Availability and Data Type Conversion\n",
    "# 2.1 Data Availability\n",
    "# From Sample Characteristics Dictionary:\n",
    "# Key 0 has disease status: Control or Celiac disease (this is the trait)\n",
    "# Key 2 has age information\n",
    "# There's no gender information available\n",
    "trait_row = 0\n",
    "age_row = 2\n",
    "gender_row = None  # Gender data is not available\n",
    "\n",
    "# 2.2 Data Type Conversion\n",
    "def convert_trait(val):\n",
    "    \"\"\"Convert trait value to binary: 1 for Celiac disease, 0 for Control.\"\"\"\n",
    "    if val is None:\n",
    "        return None\n",
    "    if ':' in val:\n",
    "        val = val.split(':', 1)[1].strip()\n",
    "    if val.lower() == 'celiac disease':\n",
    "        return 1\n",
    "    elif val.lower() == 'control':\n",
    "        return 0\n",
    "    return None\n",
    "\n",
    "def convert_age(val):\n",
    "    \"\"\"Convert age value to continuous numeric value.\"\"\"\n",
    "    if val is None:\n",
    "        return None\n",
    "    if ':' in val:\n",
    "        val = val.split(':', 1)[1].strip()\n",
    "    try:\n",
    "        return float(val)\n",
    "    except (ValueError, TypeError):\n",
    "        return None\n",
    "\n",
    "def convert_gender(val):\n",
    "    \"\"\"Convert gender to binary: 0 for female, 1 for male.\"\"\"\n",
    "    # Not used as gender data is not available\n",
    "    return None\n",
    "\n",
    "# 3. Save Metadata\n",
    "# Check if trait data is available\n",
    "is_trait_available = trait_row is not None\n",
    "# Conduct initial filtering and save information\n",
    "validate_and_save_cohort_info(\n",
    "    is_final=False,\n",
    "    cohort=cohort,\n",
    "    info_path=json_path,\n",
    "    is_gene_available=is_gene_available,\n",
    "    is_trait_available=is_trait_available\n",
    ")\n",
    "\n",
    "# 4. Clinical Feature Extraction\n",
    "# Since trait_row is not None, we proceed with clinical feature extraction\n",
    "if trait_row is not None:\n",
    "    # Extract clinical features using the library function\n",
    "    selected_clinical_df = geo_select_clinical_features(\n",
    "        clinical_df=clinical_data,  # clinical_data is presumed to be available from previous steps\n",
    "        trait=trait,\n",
    "        trait_row=trait_row,\n",
    "        convert_trait=convert_trait,\n",
    "        age_row=age_row,\n",
    "        convert_age=convert_age,\n",
    "        gender_row=gender_row,\n",
    "        convert_gender=convert_gender\n",
    "    )\n",
    "    \n",
    "    # Preview the extracted clinical data\n",
    "    print(\"Preview of selected clinical features:\")\n",
    "    print(preview_df(selected_clinical_df))\n",
    "    \n",
    "    # Save the clinical data to the specified output file\n",
    "    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
    "    selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
    "    print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "fd8e809e",
   "metadata": {},
   "source": [
    "### Step 3: Gene Data Extraction"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "f8bc79c0",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:11.267103Z",
     "iopub.status.busy": "2025-03-25T08:01:11.266990Z",
     "iopub.status.idle": "2025-03-25T08:01:11.520684Z",
     "shell.execute_reply": "2025-03-25T08:01:11.520294Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Matrix file found: ../../input/GEO/Celiac_Disease/GSE164883/GSE164883_series_matrix.txt.gz\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene data shape: (47307, 48)\n",
      "First 20 gene/probe identifiers:\n",
      "Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
      "       'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
      "       'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
      "       'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
      "       'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
      "      dtype='object', name='ID')\n"
     ]
    }
   ],
   "source": [
    "# 1. Get the SOFT and matrix file paths again \n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "print(f\"Matrix file found: {matrix_file}\")\n",
    "\n",
    "# 2. Use the get_genetic_data function from the library to get the gene_data\n",
    "try:\n",
    "    gene_data = get_genetic_data(matrix_file)\n",
    "    print(f\"Gene data shape: {gene_data.shape}\")\n",
    "    \n",
    "    # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
    "    print(\"First 20 gene/probe identifiers:\")\n",
    "    print(gene_data.index[:20])\n",
    "except Exception as e:\n",
    "    print(f\"Error extracting gene data: {e}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "9d5d69e8",
   "metadata": {},
   "source": [
    "### Step 4: Gene Identifier Review"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "58e86fd8",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:11.521962Z",
     "iopub.status.busy": "2025-03-25T08:01:11.521845Z",
     "iopub.status.idle": "2025-03-25T08:01:11.523818Z",
     "shell.execute_reply": "2025-03-25T08:01:11.523522Z"
    }
   },
   "outputs": [],
   "source": [
    "# Examining the gene identifiers from the previous step\n",
    "# These identifiers (ILMN_*) are Illumina microarray probe IDs, not human gene symbols\n",
    "# They need to be mapped to standard gene symbols for biological interpretation\n",
    "\n",
    "# Based on my biomedical knowledge, ILMN_* identifiers are Illumina BeadArray probe IDs\n",
    "# and require mapping to human gene symbols for meaningful analysis\n",
    "\n",
    "requires_gene_mapping = True\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "65cfce4b",
   "metadata": {},
   "source": [
    "### Step 5: Gene Annotation"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "cb9d09b1",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:11.524911Z",
     "iopub.status.busy": "2025-03-25T08:01:11.524806Z",
     "iopub.status.idle": "2025-03-25T08:01:17.891658Z",
     "shell.execute_reply": "2025-03-25T08:01:17.891026Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene annotation preview:\n",
      "{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
     ]
    }
   ],
   "source": [
    "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
    "gene_annotation = get_gene_annotation(soft_file)\n",
    "\n",
    "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
    "print(\"Gene annotation preview:\")\n",
    "print(preview_df(gene_annotation))\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "1d892569",
   "metadata": {},
   "source": [
    "### Step 6: Gene Identifier Mapping"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "52619dbe",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:17.893411Z",
     "iopub.status.busy": "2025-03-25T08:01:17.893283Z",
     "iopub.status.idle": "2025-03-25T08:01:18.641729Z",
     "shell.execute_reply": "2025-03-25T08:01:18.641089Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Using ID for probe identifiers and Symbol for gene symbols\n",
      "Gene mapping shape: (44837, 2)\n",
      "Sample of gene mapping data:\n",
      "             ID                     Gene\n",
      "0  ILMN_1343048      phage_lambda_genome\n",
      "1  ILMN_1343049      phage_lambda_genome\n",
      "2  ILMN_1343050  phage_lambda_genome:low\n",
      "3  ILMN_1343052  phage_lambda_genome:low\n",
      "4  ILMN_1343059                     thrB\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data shape after mapping: (21460, 48)\n",
      "First few gene symbols after mapping:\n",
      "['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT']\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Gene expression data saved to ../../output/preprocess/Celiac_Disease/gene_data/GSE164883.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Identify the relevant columns in gene annotation - 'ID' for probe identifiers and 'Symbol' for gene symbols\n",
    "probe_id_col = 'ID'\n",
    "gene_symbol_col = 'Symbol'\n",
    "\n",
    "print(f\"Using {probe_id_col} for probe identifiers and {gene_symbol_col} for gene symbols\")\n",
    "\n",
    "# 2. Extract the mapping between probe IDs and gene symbols\n",
    "gene_mapping = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
    "print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
    "print(\"Sample of gene mapping data:\")\n",
    "print(gene_mapping.head())\n",
    "\n",
    "# 3. Convert probe-level measurements to gene-level expression by applying gene mapping\n",
    "# This handles the many-to-many relationship between probes and genes\n",
    "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
    "print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
    "print(\"First few gene symbols after mapping:\")\n",
    "print(list(gene_data.index[:10]))\n",
    "\n",
    "# Optionally save the gene expression data to the output file\n",
    "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
    "gene_data.to_csv(out_gene_data_file)\n",
    "print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "475fc1d6",
   "metadata": {},
   "source": [
    "### Step 7: Data Normalization and Linking"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "896400be",
   "metadata": {
    "execution": {
     "iopub.execute_input": "2025-03-25T08:01:18.643694Z",
     "iopub.status.busy": "2025-03-25T08:01:18.643574Z",
     "iopub.status.idle": "2025-03-25T08:01:28.981772Z",
     "shell.execute_reply": "2025-03-25T08:01:28.981132Z"
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Clinical data shape: (2, 48)\n",
      "Clinical data preview:\n",
      "{'GSM5022362': [0.0, 1.0], 'GSM5022363': [1.0, 3.0], 'GSM5022364': [1.0, 3.0], 'GSM5022365': [1.0, 4.0], 'GSM5022366': [1.0, 7.0], 'GSM5022367': [0.0, 6.0], 'GSM5022368': [1.0, 9.0], 'GSM5022369': [0.0, 10.0], 'GSM5022370': [1.0, 10.0], 'GSM5022371': [0.0, 11.0], 'GSM5022372': [1.0, 11.0], 'GSM5022373': [1.0, 12.0], 'GSM5022374': [0.0, 12.0], 'GSM5022375': [0.0, 12.0], 'GSM5022376': [0.0, 12.0], 'GSM5022377': [0.0, 13.0], 'GSM5022378': [1.0, 13.0], 'GSM5022379': [1.0, 13.0], 'GSM5022380': [0.0, 14.0], 'GSM5022381': [0.0, 15.0], 'GSM5022382': [1.0, 16.0], 'GSM5022383': [1.0, 16.0], 'GSM5022384': [0.0, 17.0], 'GSM5022385': [1.0, 17.0], 'GSM5022386': [0.0, 17.0], 'GSM5022387': [1.0, 3.0], 'GSM5022388': [0.0, 2.0], 'GSM5022389': [0.0, 2.0], 'GSM5022390': [1.0, 3.0], 'GSM5022391': [1.0, 4.0], 'GSM5022392': [1.0, 4.0], 'GSM5022393': [1.0, 5.0], 'GSM5022394': [1.0, 4.0], 'GSM5022395': [0.0, 7.0], 'GSM5022396': [1.0, 8.0], 'GSM5022397': [1.0, 12.0], 'GSM5022398': [0.0, 12.0], 'GSM5022399': [1.0, 13.0], 'GSM5022400': [1.0, 13.0], 'GSM5022401': [1.0, 14.0], 'GSM5022402': [0.0, 14.0], 'GSM5022403': [0.0, 14.0], 'GSM5022404': [0.0, 15.0], 'GSM5022405': [0.0, 15.0], 'GSM5022406': [1.0, 15.0], 'GSM5022407': [0.0, 16.0], 'GSM5022408': [0.0, 14.0], 'GSM5022409': [1.0, 3.0]}\n",
      "Linked data shape before handling missing values: (48, 21462)\n",
      "Linked data first few columns:\n",
      "Index(['Celiac_Disease', 'Age', 'A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1',\n",
      "       'A2M', 'A2ML1', 'A3GALT2'],\n",
      "      dtype='object')\n"
     ]
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Linked data shape after handling missing values: (48, 21462)\n",
      "For the feature 'Celiac_Disease', the least common label is '0.0' with 22 occurrences. This represents 45.83% of the dataset.\n",
      "The distribution of the feature 'Celiac_Disease' in this dataset is fine.\n",
      "\n",
      "Quartiles for 'Age':\n",
      "  25%: 4.75\n",
      "  50% (Median): 12.0\n",
      "  75%: 14.0\n",
      "Min: 1.0\n",
      "Max: 17.0\n",
      "The distribution of the feature 'Age' in this dataset is fine.\n",
      "\n",
      "Data is usable. Saving to ../../output/preprocess/Celiac_Disease/GSE164883.csv\n"
     ]
    }
   ],
   "source": [
    "# 1. Re-load clinical data from matrix file to ensure we have the correct data\n",
    "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
    "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
    "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
    "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
    "\n",
    "# Re-extract clinical features with the properly loaded clinical data\n",
    "selected_clinical_df = geo_select_clinical_features(\n",
    "    clinical_df=clinical_data,\n",
    "    trait=trait,\n",
    "    trait_row=trait_row,\n",
    "    convert_trait=convert_trait,\n",
    "    age_row=age_row,\n",
    "    convert_age=convert_age,\n",
    "    gender_row=gender_row,\n",
    "    convert_gender=convert_gender\n",
    ")\n",
    "\n",
    "print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
    "print(\"Clinical data preview:\")\n",
    "print(preview_df(selected_clinical_df))\n",
    "\n",
    "# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function\n",
    "try:\n",
    "    linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
    "    print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
    "    print(\"Linked data first few columns:\")\n",
    "    print(linked_data.columns[:10])\n",
    "    \n",
    "    # 3. Handle missing values in the linked data\n",
    "    linked_data = handle_missing_values(linked_data, trait)\n",
    "    print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
    "    \n",
    "    # 4. Determine whether the trait and demographic features are severely biased\n",
    "    is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
    "    \n",
    "    # 5. Conduct quality check and save the cohort information\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=is_trait_biased, \n",
    "        df=unbiased_linked_data,\n",
    "        note=\"Dataset contains gene expression from duodenal biopsies of Celiac Disease patients, CVID patients, and healthy controls\"\n",
    "    )\n",
    "    \n",
    "    # 6. If the linked data is usable, save it as a CSV file\n",
    "    if is_usable:\n",
    "        print(f\"Data is usable. Saving to {out_data_file}\")\n",
    "        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
    "        unbiased_linked_data.to_csv(out_data_file)\n",
    "    else:\n",
    "        print(\"Data is not usable. Not saving linked data file.\")\n",
    "        \n",
    "except Exception as e:\n",
    "    print(f\"Error in data linking or processing: {e}\")\n",
    "    is_usable = validate_and_save_cohort_info(\n",
    "        is_final=True, \n",
    "        cohort=cohort, \n",
    "        info_path=json_path, \n",
    "        is_gene_available=True, \n",
    "        is_trait_available=True, \n",
    "        is_biased=True, \n",
    "        df=pd.DataFrame(),\n",
    "        note=f\"Error processing data: {e}\"\n",
    "    )\n",
    "    print(\"Data is not usable due to processing error.\")"
   ]
  }
 ],
 "metadata": {
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.10.16"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}