File size: 25,580 Bytes
53eb596 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "85ccdb22",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:10.934495Z",
"iopub.status.busy": "2025-03-25T08:01:10.934382Z",
"iopub.status.idle": "2025-03-25T08:01:11.100388Z",
"shell.execute_reply": "2025-03-25T08:01:11.100033Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Celiac_Disease\"\n",
"cohort = \"GSE164883\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Celiac_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Celiac_Disease/GSE164883\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Celiac_Disease/GSE164883.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Celiac_Disease/gene_data/GSE164883.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Celiac_Disease/clinical_data/GSE164883.csv\"\n",
"json_path = \"../../output/preprocess/Celiac_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "8baefe83",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "71888196",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:11.101831Z",
"iopub.status.busy": "2025-03-25T08:01:11.101689Z",
"iopub.status.idle": "2025-03-25T08:01:11.254877Z",
"shell.execute_reply": "2025-03-25T08:01:11.254453Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Transcriptomic heterogeneity of Coeliac Disease biopsies from the duodenum\"\n",
"!Series_summary\t\"Here, we present a high-resolution analysis of the transcriptomes extracted from duodenal probes of 25 children and adolescents with active CD and 21 children without CD but with diverse intestinal afflictions as controls. We found that the transcriptomes of CD patients divide into three subgroups, a mixed group resembling part of control cases and a CD-low and CD-high groups referring to lower and higher levels of CD severity\"\n",
"!Series_summary\t\"Despite generally increased inflammation, considerable variation in inflammation-level between subgroups was observed, which was further de-chiffred into immune cell types using immune cell de-convolution\"\n",
"!Series_overall_design\t\"one biopsy (15–20 mg) was taken from descending duodenum of each patient. Fresh tissue samples were snap frozen and stored in liquid nitrogen until preparation. Frozen biopsies were disrupted and homogenized by TissueLyzer from Quiagen (Hilden, Germany). Total RNA was isolated using AllPrep® DNA/RNA Micro kit (QIAGEN, Hilden, Germany) and stored at -70°C.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease: Control', 'disease: Celiac disease'], 1: ['marsh stage: 0', 'marsh stage: 3C', 'marsh stage: 3B', 'marsh stage: 3A', 'marsh stage: 1'], 2: ['age: 1', 'age: 3', 'age: 4', 'age: 7', 'age: 6', 'age: 9', 'age: 10', 'age: 11', 'age: 12', 'age: 13', 'age: 14', 'age: 15', 'age: 16', 'age: 17', 'age: 2', 'age: 5', 'age: 8']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "71edd5f9",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "07e6ebc2",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:11.256386Z",
"iopub.status.busy": "2025-03-25T08:01:11.256265Z",
"iopub.status.idle": "2025-03-25T08:01:11.265818Z",
"shell.execute_reply": "2025-03-25T08:01:11.265516Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Preview of selected clinical features:\n",
"{'GSM5022362': [0.0, 1.0], 'GSM5022363': [1.0, 3.0], 'GSM5022364': [1.0, 3.0], 'GSM5022365': [1.0, 4.0], 'GSM5022366': [1.0, 7.0], 'GSM5022367': [0.0, 6.0], 'GSM5022368': [1.0, 9.0], 'GSM5022369': [0.0, 10.0], 'GSM5022370': [1.0, 10.0], 'GSM5022371': [0.0, 11.0], 'GSM5022372': [1.0, 11.0], 'GSM5022373': [1.0, 12.0], 'GSM5022374': [0.0, 12.0], 'GSM5022375': [0.0, 12.0], 'GSM5022376': [0.0, 12.0], 'GSM5022377': [0.0, 13.0], 'GSM5022378': [1.0, 13.0], 'GSM5022379': [1.0, 13.0], 'GSM5022380': [0.0, 14.0], 'GSM5022381': [0.0, 15.0], 'GSM5022382': [1.0, 16.0], 'GSM5022383': [1.0, 16.0], 'GSM5022384': [0.0, 17.0], 'GSM5022385': [1.0, 17.0], 'GSM5022386': [0.0, 17.0], 'GSM5022387': [1.0, 3.0], 'GSM5022388': [0.0, 2.0], 'GSM5022389': [0.0, 2.0], 'GSM5022390': [1.0, 3.0], 'GSM5022391': [1.0, 4.0], 'GSM5022392': [1.0, 4.0], 'GSM5022393': [1.0, 5.0], 'GSM5022394': [1.0, 4.0], 'GSM5022395': [0.0, 7.0], 'GSM5022396': [1.0, 8.0], 'GSM5022397': [1.0, 12.0], 'GSM5022398': [0.0, 12.0], 'GSM5022399': [1.0, 13.0], 'GSM5022400': [1.0, 13.0], 'GSM5022401': [1.0, 14.0], 'GSM5022402': [0.0, 14.0], 'GSM5022403': [0.0, 14.0], 'GSM5022404': [0.0, 15.0], 'GSM5022405': [0.0, 15.0], 'GSM5022406': [1.0, 15.0], 'GSM5022407': [0.0, 16.0], 'GSM5022408': [0.0, 14.0], 'GSM5022409': [1.0, 3.0]}\n",
"Clinical data saved to ../../output/preprocess/Celiac_Disease/clinical_data/GSE164883.csv\n"
]
}
],
"source": [
"# 1. Gene Expression Data Availability\n",
"# Based on the background information, this dataset contains transcriptome data from duodenal biopsies\n",
"# which indicates gene expression data is available\n",
"is_gene_available = True\n",
"\n",
"# 2. Variable Availability and Data Type Conversion\n",
"# 2.1 Data Availability\n",
"# From Sample Characteristics Dictionary:\n",
"# Key 0 has disease status: Control or Celiac disease (this is the trait)\n",
"# Key 2 has age information\n",
"# There's no gender information available\n",
"trait_row = 0\n",
"age_row = 2\n",
"gender_row = None # Gender data is not available\n",
"\n",
"# 2.2 Data Type Conversion\n",
"def convert_trait(val):\n",
" \"\"\"Convert trait value to binary: 1 for Celiac disease, 0 for Control.\"\"\"\n",
" if val is None:\n",
" return None\n",
" if ':' in val:\n",
" val = val.split(':', 1)[1].strip()\n",
" if val.lower() == 'celiac disease':\n",
" return 1\n",
" elif val.lower() == 'control':\n",
" return 0\n",
" return None\n",
"\n",
"def convert_age(val):\n",
" \"\"\"Convert age value to continuous numeric value.\"\"\"\n",
" if val is None:\n",
" return None\n",
" if ':' in val:\n",
" val = val.split(':', 1)[1].strip()\n",
" try:\n",
" return float(val)\n",
" except (ValueError, TypeError):\n",
" return None\n",
"\n",
"def convert_gender(val):\n",
" \"\"\"Convert gender to binary: 0 for female, 1 for male.\"\"\"\n",
" # Not used as gender data is not available\n",
" return None\n",
"\n",
"# 3. Save Metadata\n",
"# Check if trait data is available\n",
"is_trait_available = trait_row is not None\n",
"# Conduct initial filtering and save information\n",
"validate_and_save_cohort_info(\n",
" is_final=False,\n",
" cohort=cohort,\n",
" info_path=json_path,\n",
" is_gene_available=is_gene_available,\n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# 4. Clinical Feature Extraction\n",
"# Since trait_row is not None, we proceed with clinical feature extraction\n",
"if trait_row is not None:\n",
" # Extract clinical features using the library function\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data, # clinical_data is presumed to be available from previous steps\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical data\n",
" print(\"Preview of selected clinical features:\")\n",
" print(preview_df(selected_clinical_df))\n",
" \n",
" # Save the clinical data to the specified output file\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "fd8e809e",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "f8bc79c0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:11.267103Z",
"iopub.status.busy": "2025-03-25T08:01:11.266990Z",
"iopub.status.idle": "2025-03-25T08:01:11.520684Z",
"shell.execute_reply": "2025-03-25T08:01:11.520294Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Celiac_Disease/GSE164883/GSE164883_series_matrix.txt.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (47307, 48)\n",
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
" 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
" 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
" 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "9d5d69e8",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "58e86fd8",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:11.521962Z",
"iopub.status.busy": "2025-03-25T08:01:11.521845Z",
"iopub.status.idle": "2025-03-25T08:01:11.523818Z",
"shell.execute_reply": "2025-03-25T08:01:11.523522Z"
}
},
"outputs": [],
"source": [
"# Examining the gene identifiers from the previous step\n",
"# These identifiers (ILMN_*) are Illumina microarray probe IDs, not human gene symbols\n",
"# They need to be mapped to standard gene symbols for biological interpretation\n",
"\n",
"# Based on my biomedical knowledge, ILMN_* identifiers are Illumina BeadArray probe IDs\n",
"# and require mapping to human gene symbols for meaningful analysis\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "65cfce4b",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "cb9d09b1",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:11.524911Z",
"iopub.status.busy": "2025-03-25T08:01:11.524806Z",
"iopub.status.idle": "2025-03-25T08:01:17.891658Z",
"shell.execute_reply": "2025-03-25T08:01:17.891026Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "1d892569",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "52619dbe",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:17.893411Z",
"iopub.status.busy": "2025-03-25T08:01:17.893283Z",
"iopub.status.idle": "2025-03-25T08:01:18.641729Z",
"shell.execute_reply": "2025-03-25T08:01:18.641089Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Using ID for probe identifiers and Symbol for gene symbols\n",
"Gene mapping shape: (44837, 2)\n",
"Sample of gene mapping data:\n",
" ID Gene\n",
"0 ILMN_1343048 phage_lambda_genome\n",
"1 ILMN_1343049 phage_lambda_genome\n",
"2 ILMN_1343050 phage_lambda_genome:low\n",
"3 ILMN_1343052 phage_lambda_genome:low\n",
"4 ILMN_1343059 thrB\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data shape after mapping: (21460, 48)\n",
"First few gene symbols after mapping:\n",
"['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT', 'A4GNT']\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Celiac_Disease/gene_data/GSE164883.csv\n"
]
}
],
"source": [
"# 1. Identify the relevant columns in gene annotation - 'ID' for probe identifiers and 'Symbol' for gene symbols\n",
"probe_id_col = 'ID'\n",
"gene_symbol_col = 'Symbol'\n",
"\n",
"print(f\"Using {probe_id_col} for probe identifiers and {gene_symbol_col} for gene symbols\")\n",
"\n",
"# 2. Extract the mapping between probe IDs and gene symbols\n",
"gene_mapping = get_gene_mapping(gene_annotation, probe_id_col, gene_symbol_col)\n",
"print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
"print(\"Sample of gene mapping data:\")\n",
"print(gene_mapping.head())\n",
"\n",
"# 3. Convert probe-level measurements to gene-level expression by applying gene mapping\n",
"# This handles the many-to-many relationship between probes and genes\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"First few gene symbols after mapping:\")\n",
"print(list(gene_data.index[:10]))\n",
"\n",
"# Optionally save the gene expression data to the output file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "475fc1d6",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "896400be",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:18.643694Z",
"iopub.status.busy": "2025-03-25T08:01:18.643574Z",
"iopub.status.idle": "2025-03-25T08:01:28.981772Z",
"shell.execute_reply": "2025-03-25T08:01:28.981132Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data shape: (2, 48)\n",
"Clinical data preview:\n",
"{'GSM5022362': [0.0, 1.0], 'GSM5022363': [1.0, 3.0], 'GSM5022364': [1.0, 3.0], 'GSM5022365': [1.0, 4.0], 'GSM5022366': [1.0, 7.0], 'GSM5022367': [0.0, 6.0], 'GSM5022368': [1.0, 9.0], 'GSM5022369': [0.0, 10.0], 'GSM5022370': [1.0, 10.0], 'GSM5022371': [0.0, 11.0], 'GSM5022372': [1.0, 11.0], 'GSM5022373': [1.0, 12.0], 'GSM5022374': [0.0, 12.0], 'GSM5022375': [0.0, 12.0], 'GSM5022376': [0.0, 12.0], 'GSM5022377': [0.0, 13.0], 'GSM5022378': [1.0, 13.0], 'GSM5022379': [1.0, 13.0], 'GSM5022380': [0.0, 14.0], 'GSM5022381': [0.0, 15.0], 'GSM5022382': [1.0, 16.0], 'GSM5022383': [1.0, 16.0], 'GSM5022384': [0.0, 17.0], 'GSM5022385': [1.0, 17.0], 'GSM5022386': [0.0, 17.0], 'GSM5022387': [1.0, 3.0], 'GSM5022388': [0.0, 2.0], 'GSM5022389': [0.0, 2.0], 'GSM5022390': [1.0, 3.0], 'GSM5022391': [1.0, 4.0], 'GSM5022392': [1.0, 4.0], 'GSM5022393': [1.0, 5.0], 'GSM5022394': [1.0, 4.0], 'GSM5022395': [0.0, 7.0], 'GSM5022396': [1.0, 8.0], 'GSM5022397': [1.0, 12.0], 'GSM5022398': [0.0, 12.0], 'GSM5022399': [1.0, 13.0], 'GSM5022400': [1.0, 13.0], 'GSM5022401': [1.0, 14.0], 'GSM5022402': [0.0, 14.0], 'GSM5022403': [0.0, 14.0], 'GSM5022404': [0.0, 15.0], 'GSM5022405': [0.0, 15.0], 'GSM5022406': [1.0, 15.0], 'GSM5022407': [0.0, 16.0], 'GSM5022408': [0.0, 14.0], 'GSM5022409': [1.0, 3.0]}\n",
"Linked data shape before handling missing values: (48, 21462)\n",
"Linked data first few columns:\n",
"Index(['Celiac_Disease', 'Age', 'A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1',\n",
" 'A2M', 'A2ML1', 'A3GALT2'],\n",
" dtype='object')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (48, 21462)\n",
"For the feature 'Celiac_Disease', the least common label is '0.0' with 22 occurrences. This represents 45.83% of the dataset.\n",
"The distribution of the feature 'Celiac_Disease' in this dataset is fine.\n",
"\n",
"Quartiles for 'Age':\n",
" 25%: 4.75\n",
" 50% (Median): 12.0\n",
" 75%: 14.0\n",
"Min: 1.0\n",
"Max: 17.0\n",
"The distribution of the feature 'Age' in this dataset is fine.\n",
"\n",
"Data is usable. Saving to ../../output/preprocess/Celiac_Disease/GSE164883.csv\n"
]
}
],
"source": [
"# 1. Re-load clinical data from matrix file to ensure we have the correct data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# Re-extract clinical features with the properly loaded clinical data\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function\n",
"try:\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
" print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
" print(\"Linked data first few columns:\")\n",
" print(linked_data.columns[:10])\n",
" \n",
" # 3. Handle missing values in the linked data\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # 4. Determine whether the trait and demographic features are severely biased\n",
" is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
" # 5. Conduct quality check and save the cohort information\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression from duodenal biopsies of Celiac Disease patients, CVID patients, and healthy controls\"\n",
" )\n",
" \n",
" # 6. If the linked data is usable, save it as a CSV file\n",
" if is_usable:\n",
" print(f\"Data is usable. Saving to {out_data_file}\")\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" else:\n",
" print(\"Data is not usable. Not saving linked data file.\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error in data linking or processing: {e}\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True, \n",
" df=pd.DataFrame(),\n",
" note=f\"Error processing data: {e}\"\n",
" )\n",
" print(\"Data is not usable due to processing error.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|