File size: 24,259 Bytes
f88156f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"id": "9a554fe0",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:43.848744Z",
"iopub.status.busy": "2025-03-25T08:01:43.848628Z",
"iopub.status.idle": "2025-03-25T08:01:44.009886Z",
"shell.execute_reply": "2025-03-25T08:01:44.009535Z"
}
},
"outputs": [],
"source": [
"import sys\n",
"import os\n",
"sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n",
"\n",
"# Path Configuration\n",
"from tools.preprocess import *\n",
"\n",
"# Processing context\n",
"trait = \"Celiac_Disease\"\n",
"cohort = \"GSE72625\"\n",
"\n",
"# Input paths\n",
"in_trait_dir = \"../../input/GEO/Celiac_Disease\"\n",
"in_cohort_dir = \"../../input/GEO/Celiac_Disease/GSE72625\"\n",
"\n",
"# Output paths\n",
"out_data_file = \"../../output/preprocess/Celiac_Disease/GSE72625.csv\"\n",
"out_gene_data_file = \"../../output/preprocess/Celiac_Disease/gene_data/GSE72625.csv\"\n",
"out_clinical_data_file = \"../../output/preprocess/Celiac_Disease/clinical_data/GSE72625.csv\"\n",
"json_path = \"../../output/preprocess/Celiac_Disease/cohort_info.json\"\n"
]
},
{
"cell_type": "markdown",
"id": "cb3ef66d",
"metadata": {},
"source": [
"### Step 1: Initial Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "5dc29f26",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:44.011240Z",
"iopub.status.busy": "2025-03-25T08:01:44.011099Z",
"iopub.status.idle": "2025-03-25T08:01:44.180687Z",
"shell.execute_reply": "2025-03-25T08:01:44.180332Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Background Information:\n",
"!Series_title\t\"Gastrointestinal symptoms and pathology in patients with Common variable immunodeficiency\"\n",
"!Series_summary\t\"Based on the findings of increased IEL in duodenal biopsies in CVID, an overlap with celiac disease has been suggested. In the present study, increased IEL, in particular in the pars descendens of the duodenum, was one of the most frequent histopathological finding. We therefore examined the gene expression profile in pars descendens of duodenum in CVID patients with increased IEL (n=12, IEL mean 34 [range 22-56] IEL/100 EC), CVID with normal levels of IEL (n=8), celiac disease (n=10, Marsh grade 3a or above) and healthy controls (n=17) by gene expression microarray\"\n",
"!Series_overall_design\t\"GI histopathological findings in 53 CVID patients that underwent upper and lower endoscopic examination were addressed. For the microarray analysis 20 CVID (8 CVID_normal and 12 CVID with incresed IEL), 10 patients with celiac diseases and 17 healthy controls were included.\"\n",
"Sample Characteristics Dictionary:\n",
"{0: ['disease state: CVID with increased intraepithelial lymphocytes', 'disease state: CVID without increased intraepithelial lymphocytes', 'disease state: celiac disease', 'disease state: healthy controls'], 1: ['tissue: duodenal biopsy']}\n"
]
}
],
"source": [
"from tools.preprocess import *\n",
"# 1. Identify the paths to the SOFT file and the matrix file\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"\n",
"# 2. Read the matrix file to obtain background information and sample characteristics data\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n",
"sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n",
"\n",
"# 4. Explicitly print out all the background information and the sample characteristics dictionary\n",
"print(\"Background Information:\")\n",
"print(background_info)\n",
"print(\"Sample Characteristics Dictionary:\")\n",
"print(sample_characteristics_dict)\n"
]
},
{
"cell_type": "markdown",
"id": "935b4909",
"metadata": {},
"source": [
"### Step 2: Dataset Analysis and Clinical Feature Extraction"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e348ca09",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:44.182108Z",
"iopub.status.busy": "2025-03-25T08:01:44.181992Z",
"iopub.status.idle": "2025-03-25T08:01:44.189196Z",
"shell.execute_reply": "2025-03-25T08:01:44.188905Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical Features Preview: {0: [0.0], 1: [nan]}\n",
"Clinical data saved to ../../output/preprocess/Celiac_Disease/clinical_data/GSE72625.csv\n"
]
}
],
"source": [
"import pandas as pd\n",
"import os\n",
"import numpy as np\n",
"from typing import Optional, Callable, Dict, Any\n",
"import json\n",
"\n",
"# Check if the cohort has gene expression data based on background information\n",
"# This seems to contain gene expression microarray data from duodenal biopsies\n",
"is_gene_available = True\n",
"\n",
"# Define the trait, age, and gender rows from the sample characteristics dictionary\n",
"# Trait (disease state) is available at key 0\n",
"trait_row = 0\n",
"# Age is not available in the sample characteristics dictionary\n",
"age_row = None\n",
"# Gender is not available in the sample characteristics dictionary\n",
"gender_row = None\n",
"\n",
"# Define conversion functions for the clinical variables\n",
"def convert_trait(value_str):\n",
" \"\"\"Convert trait (disease state) string to binary value (Celiac disease = 1, others = 0)\"\"\"\n",
" if value_str is None or pd.isna(value_str):\n",
" return None\n",
" \n",
" # Extract the value after the colon if present\n",
" if ':' in value_str:\n",
" value = value_str.split(':', 1)[1].strip().lower()\n",
" else:\n",
" value = value_str.strip().lower()\n",
" \n",
" # Convert to binary based on Celiac Disease presence\n",
" if 'celiac disease' in value:\n",
" return 1\n",
" elif 'cvid' in value or 'healthy control' in value:\n",
" return 0\n",
" else:\n",
" return None\n",
"\n",
"def convert_age(value_str):\n",
" \"\"\"Convert age string to continuous value (not used as age is not available)\"\"\"\n",
" return None\n",
"\n",
"def convert_gender(value_str):\n",
" \"\"\"Convert gender string to binary value (not used as gender is not available)\"\"\"\n",
" return None\n",
"\n",
"# Check trait data availability\n",
"is_trait_available = trait_row is not None\n",
"\n",
"# Save metadata for initial filtering\n",
"validate_and_save_cohort_info(\n",
" is_final=False, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=is_gene_available, \n",
" is_trait_available=is_trait_available\n",
")\n",
"\n",
"# If trait data is available, extract clinical features\n",
"if is_trait_available:\n",
" # Load the clinical data\n",
" clinical_data = pd.DataFrame(\n",
" {0: ['disease state: CVID with increased intraepithelial lymphocytes', \n",
" 'disease state: CVID without increased intraepithelial lymphocytes', \n",
" 'disease state: celiac disease', \n",
" 'disease state: healthy controls'],\n",
" 1: ['tissue: duodenal biopsy'] * 4}\n",
" )\n",
" \n",
" # Extract clinical features\n",
" selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
" )\n",
" \n",
" # Preview the extracted clinical features\n",
" preview = preview_df(selected_clinical_df)\n",
" print(\"Clinical Features Preview:\", preview)\n",
" \n",
" # Create directory if it doesn't exist\n",
" os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n",
" \n",
" # Save the clinical data to CSV\n",
" selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n",
" print(f\"Clinical data saved to {out_clinical_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "3757cfed",
"metadata": {},
"source": [
"### Step 3: Gene Data Extraction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "1cb8f8b7",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:44.190568Z",
"iopub.status.busy": "2025-03-25T08:01:44.190461Z",
"iopub.status.idle": "2025-03-25T08:01:44.451405Z",
"shell.execute_reply": "2025-03-25T08:01:44.451014Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Matrix file found: ../../input/GEO/Celiac_Disease/GSE72625/GSE72625_series_matrix.txt.gz\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene data shape: (47323, 47)\n",
"First 20 gene/probe identifiers:\n",
"Index(['ILMN_1343291', 'ILMN_1343295', 'ILMN_1651199', 'ILMN_1651209',\n",
" 'ILMN_1651210', 'ILMN_1651221', 'ILMN_1651228', 'ILMN_1651229',\n",
" 'ILMN_1651230', 'ILMN_1651232', 'ILMN_1651235', 'ILMN_1651236',\n",
" 'ILMN_1651237', 'ILMN_1651238', 'ILMN_1651249', 'ILMN_1651253',\n",
" 'ILMN_1651254', 'ILMN_1651259', 'ILMN_1651260', 'ILMN_1651262'],\n",
" dtype='object', name='ID')\n"
]
}
],
"source": [
"# 1. Get the SOFT and matrix file paths again \n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"print(f\"Matrix file found: {matrix_file}\")\n",
"\n",
"# 2. Use the get_genetic_data function from the library to get the gene_data\n",
"try:\n",
" gene_data = get_genetic_data(matrix_file)\n",
" print(f\"Gene data shape: {gene_data.shape}\")\n",
" \n",
" # 3. Print the first 20 row IDs (gene or probe identifiers)\n",
" print(\"First 20 gene/probe identifiers:\")\n",
" print(gene_data.index[:20])\n",
"except Exception as e:\n",
" print(f\"Error extracting gene data: {e}\")\n"
]
},
{
"cell_type": "markdown",
"id": "c1063e1e",
"metadata": {},
"source": [
"### Step 4: Gene Identifier Review"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "1321fdcb",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:44.453182Z",
"iopub.status.busy": "2025-03-25T08:01:44.453058Z",
"iopub.status.idle": "2025-03-25T08:01:44.454965Z",
"shell.execute_reply": "2025-03-25T08:01:44.454681Z"
}
},
"outputs": [],
"source": [
"# Looking at the identifiers, these are Illumina microarray probe IDs (starting with ILMN_)\n",
"# These are not human gene symbols and will need to be mapped to gene symbols\n",
"\n",
"requires_gene_mapping = True\n"
]
},
{
"cell_type": "markdown",
"id": "862241cc",
"metadata": {},
"source": [
"### Step 5: Gene Annotation"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "48da686a",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:44.456660Z",
"iopub.status.busy": "2025-03-25T08:01:44.456538Z",
"iopub.status.idle": "2025-03-25T08:01:49.709282Z",
"shell.execute_reply": "2025-03-25T08:01:49.708887Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene annotation preview:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Species': [nan, nan, nan, nan, nan], 'Source': [nan, nan, nan, nan, nan], 'Search_Key': [nan, nan, nan, nan, nan], 'Transcript': [nan, nan, nan, nan, nan], 'ILMN_Gene': [nan, nan, nan, nan, nan], 'Source_Reference_ID': [nan, nan, nan, nan, nan], 'RefSeq_ID': [nan, nan, nan, nan, nan], 'Unigene_ID': [nan, nan, nan, nan, nan], 'Entrez_Gene_ID': [nan, nan, nan, nan, nan], 'GI': [nan, nan, nan, nan, nan], 'Accession': [nan, nan, nan, nan, nan], 'Symbol': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB'], 'Protein_Product': [nan, nan, nan, nan, 'thrB'], 'Probe_Id': [nan, nan, nan, nan, nan], 'Array_Address_Id': [5090180.0, 6510136.0, 7560739.0, 1450438.0, 1240647.0], 'Probe_Type': [nan, nan, nan, nan, nan], 'Probe_Start': [nan, nan, nan, nan, nan], 'SEQUENCE': ['GAATAAAGAACAATCTGCTGATGATCCCTCCGTGGATCTGATTCGTGTAA', 'CCATGTGATACGAGGGCGCGTAGTTTGCATTATCGTTTTTATCGTTTCAA', 'CCGACAGATGTATGTAAGGCCAACGTGCTCAAATCTTCATACAGAAAGAT', 'TCTGTCACTGTCAGGAAAGTGGTAAAACTGCAACTCAATTACTGCAATGC', 'CTTGTGCCTGAGCTGTCAAAAGTAGAGCACGTCGCCGAGATGAAGGGCGC'], 'Chromosome': [nan, nan, nan, nan, nan], 'Probe_Chr_Orientation': [nan, nan, nan, nan, nan], 'Probe_Coordinates': [nan, nan, nan, nan, nan], 'Cytoband': [nan, nan, nan, nan, nan], 'Definition': [nan, nan, nan, nan, nan], 'Ontology_Component': [nan, nan, nan, nan, nan], 'Ontology_Process': [nan, nan, nan, nan, nan], 'Ontology_Function': [nan, nan, nan, nan, nan], 'Synonyms': [nan, nan, nan, nan, nan], 'Obsolete_Probe_Id': [nan, nan, nan, nan, nan], 'GB_ACC': [nan, nan, nan, nan, nan]}\n"
]
}
],
"source": [
"# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n",
"gene_annotation = get_gene_annotation(soft_file)\n",
"\n",
"# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n",
"print(\"Gene annotation preview:\")\n",
"print(preview_df(gene_annotation))\n"
]
},
{
"cell_type": "markdown",
"id": "a926a255",
"metadata": {},
"source": [
"### Step 6: Gene Identifier Mapping"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "8802a84b",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:49.711132Z",
"iopub.status.busy": "2025-03-25T08:01:49.710964Z",
"iopub.status.idle": "2025-03-25T08:01:50.608938Z",
"shell.execute_reply": "2025-03-25T08:01:50.608553Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene mapping shape: (44837, 2)\n",
"First 5 rows of gene mapping:\n",
"{'ID': ['ILMN_1343048', 'ILMN_1343049', 'ILMN_1343050', 'ILMN_1343052', 'ILMN_1343059'], 'Gene': ['phage_lambda_genome', 'phage_lambda_genome', 'phage_lambda_genome:low', 'phage_lambda_genome:low', 'thrB']}\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data shape after mapping: (21464, 47)\n",
"First 10 gene symbols after mapping:\n",
"Index(['A1BG', 'A1CF', 'A26C3', 'A2BP1', 'A2LD1', 'A2M', 'A2ML1', 'A3GALT2',\n",
" 'A4GALT', 'A4GNT'],\n",
" dtype='object', name='Gene')\n",
"Gene expression data shape after normalization: (20259, 47)\n",
"First 10 normalized gene symbols:\n",
"Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2', 'A4GALT',\n",
" 'A4GNT', 'AAA1', 'AAAS'],\n",
" dtype='object', name='Gene')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Gene expression data saved to ../../output/preprocess/Celiac_Disease/gene_data/GSE72625.csv\n"
]
}
],
"source": [
"# 1. Identify columns for gene mapping\n",
"# From the previous outputs, we can see that:\n",
"# - Gene expression data has index 'ID' with identifiers like ILMN_1343291\n",
"# - Gene annotation data has 'ID' column with same ILMN_ format identifiers \n",
"# - Gene annotation data has 'Symbol' column which contains gene symbols\n",
"\n",
"# 2. Get gene mapping dataframe using the get_gene_mapping function\n",
"gene_mapping = get_gene_mapping(gene_annotation, 'ID', 'Symbol')\n",
"print(f\"Gene mapping shape: {gene_mapping.shape}\")\n",
"print(\"First 5 rows of gene mapping:\")\n",
"print(preview_df(gene_mapping))\n",
"\n",
"# 3. Apply gene mapping to convert probe-level measurements to gene expression data\n",
"gene_data = apply_gene_mapping(gene_data, gene_mapping)\n",
"print(f\"Gene expression data shape after mapping: {gene_data.shape}\")\n",
"print(\"First 10 gene symbols after mapping:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Normalize gene symbols to ensure consistency across the dataset\n",
"gene_data = normalize_gene_symbols_in_index(gene_data)\n",
"print(f\"Gene expression data shape after normalization: {gene_data.shape}\")\n",
"print(\"First 10 normalized gene symbols:\")\n",
"print(gene_data.index[:10])\n",
"\n",
"# Save the gene expression data to a CSV file\n",
"os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n",
"gene_data.to_csv(out_gene_data_file)\n",
"print(f\"Gene expression data saved to {out_gene_data_file}\")\n"
]
},
{
"cell_type": "markdown",
"id": "2717b10b",
"metadata": {},
"source": [
"### Step 7: Data Normalization and Linking"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "f21a2fda",
"metadata": {
"execution": {
"iopub.execute_input": "2025-03-25T08:01:50.610797Z",
"iopub.status.busy": "2025-03-25T08:01:50.610654Z",
"iopub.status.idle": "2025-03-25T08:02:00.764795Z",
"shell.execute_reply": "2025-03-25T08:02:00.764369Z"
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Clinical data shape: (1, 47)\n",
"Clinical data preview:\n",
"{'GSM1866896': [0.0], 'GSM1866897': [0.0], 'GSM1866898': [0.0], 'GSM1866899': [0.0], 'GSM1866900': [0.0], 'GSM1866901': [0.0], 'GSM1866902': [0.0], 'GSM1866903': [0.0], 'GSM1866904': [0.0], 'GSM1866905': [0.0], 'GSM1866906': [0.0], 'GSM1866907': [0.0], 'GSM1866908': [0.0], 'GSM1866909': [0.0], 'GSM1866910': [0.0], 'GSM1866911': [0.0], 'GSM1866912': [0.0], 'GSM1866913': [0.0], 'GSM1866914': [0.0], 'GSM1866915': [0.0], 'GSM1866916': [1.0], 'GSM1866917': [1.0], 'GSM1866918': [1.0], 'GSM1866919': [1.0], 'GSM1866920': [1.0], 'GSM1866921': [1.0], 'GSM1866922': [1.0], 'GSM1866923': [1.0], 'GSM1866924': [1.0], 'GSM1866925': [1.0], 'GSM1866926': [0.0], 'GSM1866927': [0.0], 'GSM1866928': [0.0], 'GSM1866929': [0.0], 'GSM1866930': [0.0], 'GSM1866931': [0.0], 'GSM1866932': [0.0], 'GSM1866933': [0.0], 'GSM1866934': [0.0], 'GSM1866935': [0.0], 'GSM1866936': [0.0], 'GSM1866937': [0.0], 'GSM1866938': [0.0], 'GSM1866939': [0.0], 'GSM1866940': [0.0], 'GSM1866941': [0.0], 'GSM1866942': [0.0]}\n",
"Linked data shape before handling missing values: (47, 20260)\n",
"Linked data first few columns:\n",
"Index(['Celiac_Disease', 'A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2ML1', 'A3GALT2',\n",
" 'A4GALT', 'A4GNT', 'AAA1'],\n",
" dtype='object')\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Linked data shape after handling missing values: (47, 20260)\n",
"For the feature 'Celiac_Disease', the least common label is '1.0' with 10 occurrences. This represents 21.28% of the dataset.\n",
"The distribution of the feature 'Celiac_Disease' in this dataset is fine.\n",
"\n",
"Data is usable. Saving to ../../output/preprocess/Celiac_Disease/GSE72625.csv\n"
]
}
],
"source": [
"# 1. Re-load clinical data from matrix file to ensure we have the correct data\n",
"soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n",
"background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n",
"clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n",
"background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n",
"\n",
"# Re-extract clinical features with the properly loaded clinical data\n",
"selected_clinical_df = geo_select_clinical_features(\n",
" clinical_df=clinical_data,\n",
" trait=trait,\n",
" trait_row=trait_row,\n",
" convert_trait=convert_trait,\n",
" age_row=age_row,\n",
" convert_age=convert_age,\n",
" gender_row=gender_row,\n",
" convert_gender=convert_gender\n",
")\n",
"\n",
"print(f\"Clinical data shape: {selected_clinical_df.shape}\")\n",
"print(\"Clinical data preview:\")\n",
"print(preview_df(selected_clinical_df))\n",
"\n",
"# 2. Link the clinical and genetic data with the 'geo_link_clinical_genetic_data' function\n",
"try:\n",
" linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n",
" print(f\"Linked data shape before handling missing values: {linked_data.shape}\")\n",
" print(\"Linked data first few columns:\")\n",
" print(linked_data.columns[:10])\n",
" \n",
" # 3. Handle missing values in the linked data\n",
" linked_data = handle_missing_values(linked_data, trait)\n",
" print(f\"Linked data shape after handling missing values: {linked_data.shape}\")\n",
" \n",
" # 4. Determine whether the trait and demographic features are severely biased\n",
" is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n",
" \n",
" # 5. Conduct quality check and save the cohort information\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=is_trait_biased, \n",
" df=unbiased_linked_data,\n",
" note=\"Dataset contains gene expression from duodenal biopsies of Celiac Disease patients, CVID patients, and healthy controls\"\n",
" )\n",
" \n",
" # 6. If the linked data is usable, save it as a CSV file\n",
" if is_usable:\n",
" print(f\"Data is usable. Saving to {out_data_file}\")\n",
" os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n",
" unbiased_linked_data.to_csv(out_data_file)\n",
" else:\n",
" print(\"Data is not usable. Not saving linked data file.\")\n",
" \n",
"except Exception as e:\n",
" print(f\"Error in data linking or processing: {e}\")\n",
" is_usable = validate_and_save_cohort_info(\n",
" is_final=True, \n",
" cohort=cohort, \n",
" info_path=json_path, \n",
" is_gene_available=True, \n",
" is_trait_available=True, \n",
" is_biased=True, \n",
" df=pd.DataFrame(),\n",
" note=f\"Error processing data: {e}\"\n",
" )\n",
" print(\"Data is not usable due to processing error.\")"
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.16"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|